Citation: | WU Shun-chuan, SUN Wei, CHENG Zi-qiao. Acoustic emission characteristics of Brazilian test for low-porosity sandstone under different load conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 988-998. doi: 10.13374/j.issn2095-9389.2019.08.12.004 |
[1] |
Akazawa T. New test method for evaluating internal stress due to compression of concrete (the splitting tension test) (part1). <italic>J Jpn Soc Civil Eng</italic>, 1943, 29: 777
|
[2] |
Xu X L, Wu S C, Gao Y T, et al. Effects of micro-structure and micro-parameters on brazilian tensile strength using flat-joint model. <italic>Rock Mech Rock Eng</italic>, 2016, 49(9): 1
|
[3] |
ASTM. D3967-16 Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens. West Conshohocken: ASTM International, 2016
|
[4] |
IS RM. Suggested methods for determining tensile strength of rock materials. <italic>Int J Rock Mech Min Sci Geomech Abstr</italic>, 1978, 15(3): 99 doi: 10.1016/0148-9062(78)90003-7
|
[5] |
中華人民共和國電力工業部. GB/T 50266-99工程巖體試驗方法標準. 北京: 中國計劃出版社, 1999
Ministry of Power Industry, People's Republic of China. GB/T 50266-99 Standard for Tests Method of Engineering Rock Massas. Beijing: China Planning Press, 1999
|
[6] |
長江水利委員會長江科學院. SL264—2001水利水電工程巖石試驗規程. 北京: 中國水利水電出版社, 2001
Changjiang River Scientific Research Institute of Changjiang Water Resources Commission. SL264—2001 Specifications for Rock Tests in Water Conservancy and Hydroelectric Engineering. Beijing: China Water and Power Press, 2001
|
[7] |
Fairhurst C. On the validity of the ‘Brazilian’ test for brittle materials. <italic>Int J Rock Mech Min Sci Geomech Abstr</italic>, 1964, 1(4): 535 doi: 10.1016/0148-9062(64)90060-9
|
[8] |
Erarslan N, Williams D J. Experimental, numerical and analytical studies on tensile strength of rocks. <italic>Int J Rock Mech Min Sci</italic>, 2012, 49: 21 doi: 10.1016/j.ijrmms.2011.11.007
|
[9] |
Hudson J A, Brown E T, Rummel F. The controlled failure of rock discs and rings loaded in diametral compression. <italic>Int J Rock Mech Min Sci</italic>, 1972, 9(2): 241 doi: 10.1016/0148-9062(72)90025-3
|
[10] |
Lanaro F, Sato T, Stephansson O. Microcrack modelling of Brazilian tensile tests with the boundary element method. <italic>Int J Rock Mech Min Sci</italic>, 2009, 46(3): 450 doi: 10.1016/j.ijrmms.2008.11.007
|
[11] |
Markides C F, Kourkoulis S K. The stress field in a standardized Brazilian disc: the influence of the loading type acting on the actual contact length. <italic>Rock Mech Rock Eng</italic>, 2012, 45(2): 145 doi: 10.1007/s00603-011-0201-2
|
[12] |
Garcia-Fernandez C C, Gonzalez-Nicieza C, Alvarez-Fernandez M I, et al. Analytical and experimental study of failure onset during a Brazilian test. <italic>Int J Rock Mech Min Sci</italic>, 2018, 103: 254 doi: 10.1016/j.ijrmms.2018.01.045
|
[13] |
King M S, Pettitt W S, Haycox J R, et al. Acoustic emissions associated with the formation of fracture sets in sandstone under polyaxial stress conditions. <italic>Geophys Prospect</italic>, 2012, 60: 93 doi: 10.1111/j.1365-2478.2011.00959.x
|
[14] |
Chow T, Hutchins D A, Falls S D, et al. Ultrasonic attenuation tomography in disks under load//IEEE Symposium on Ultrasonics. Honolulu, 1990
|
[15] |
Wang Y S, Deng J H, Li L R, et al. Micro-failure analysis of direct and flat loading Brazilian tensile tests. <italic>Rock Mech Rock Eng</italic>, 2019, 52(11): 4175 doi: 10.1007/s00603-019-01877-7
|
[16] |
吳順川, 郭沛, 張詩淮, 等. 基于巴西劈裂試驗的花崗巖熱損傷研究. 巖石力學與工程學報, 2018, 37(增刊 2): 3805
Wu S C, Guo P, Zhang S H, et al. Study on thermal damage of granite based on Brazilian splitting test. Chin J Rock Mech Eng, 2018, 37(Suppl 2): 3805
|
[17] |
劉希靈, 劉周, 李夕兵, 等. 單軸壓縮與劈裂荷載下灰巖聲發射b值特性研究. 巖土力學, 2019, 40(增刊 1): 267
Liu X L, Liu Z, Li X B, et al. Acoustic emission b-values of limestone under uniaxial compression and Brazilian splitting loads. Rock Soil Mech, 2019, 40(Suppl 1): 267
|
[18] |
Falls S D. Ultrasonic Imaging and Acoustic Emission Studies of Microcrack Development in Lac du Bonnet Granite[Dissertation]. Canada: Queen's University at Kingston, 1993
|
[19] |
Zhang S H, Wu S C, Zhang G, et al. Three-dimensional evolution of damage in sandstone Brazilian discs by the concurrent use of active and passive ultrasonic techniques. <italic>Acta Geotech</italic>, 2020, 15(2): 393 doi: 10.1007/s11440-018-0737-3
|
[20] |
任會蘭, 寧建國, 宋水舟, 等. 基于聲發射矩張量分析混凝土破壞的裂紋運動. 力學學報, 2019, 51(6):1830 doi: 10.6052/0459-1879-19-170
Ren H L, Ning J G, Song S Z, et al. Investigation on crack growth in concrete by moment tensor analysis of acoustic emission. <italic>Chin J Theoret Appl Mech</italic>, 2019, 51(6): 1830 doi: 10.6052/0459-1879-19-170
|
[21] |
張樹文, 鮮學福, 周軍平, 等. 基于巴西劈裂試驗的頁巖聲發射與能量分布特征研究. 煤炭學報, 2017, 42(增刊 2): 346
Zhang S W, Xian X F, Zhou J P, et al. Acoustic emission characteristics and the energy distribution of the shale in Brazilian splitting testing. J China Coal Soc, 2017, 42(Suppl 2): 346
|
[22] |
Zhang S H, Wu S C, Chu C Q, et al. Acoustic emission associated with self-sustaining failure in low-porosity sandstone under uniaxial compression. <italic>Rock Mech Rock Eng</italic>, 2019, 52(7): 2067 doi: 10.1007/s00603-018-1686-8
|
[23] |
張詩淮. 硬脆性砂巖強度與變形特性研究[學位論文]. 北京: 北京科技大學, 2019
Zhang S H. Study on Strength and Deformability of Hard Brittle Sandstone[Dissertation]. Beijing: University of Science and Technology Beijing, 2019
|
[24] |
Fehler M, House L, Kaieda H. Determining planes along which earthquakes occur: method and application to earthquakes accompanying hydraulic fracturing. <italic>J Geophys Res Solid Earth</italic>, 1987, 92(B9): 9407 doi: 10.1029/JB092iB09p09407
|
[25] |
Gutenberg G, Richter C F. Seismicity of the earth and associated phenomena. <italic>J Geophys Res</italic>, 1950, 55: 97 doi: 10.1029/JZ055i001p00097
|
[26] |
Knopoff L, Randall M J. The compensated linear-vector dipole: a possible mechanism for deep earthquakes. <italic>J Geophys Res</italic>, 1970, 75(26): 4957 doi: 10.1029/JB075i026p04957
|
[27] |
Finck F, Kurz J H, Grosse C U, et al. Advances in moment tensor inversion for civil engineering//International Symposium on Non-Destructive Testing in Civil Engineering, 2003
|
[28] |
Ohtsu M. Simplified moment tensor analysis and unified decomposition of acoustic emission source: application to in situ hydrofracturing test. <italic>J Geophys Res Solid Earth</italic>, 1991, 96(B4): 6211 doi: 10.1029/90JB02689
|
[29] |
Zhang Q, Zhang X P. The crack nature analysis of primary and secondary cracks: a numerical study based on moment tensors. <italic>Eng Fract Mech</italic>, 2019, 210: 70 doi: 10.1016/j.engfracmech.2018.05.006
|
[30] |
Vavry?uk V, Kühn D. Moment tensor inversion of waveforms: a two-step time-frequency approach. <italic>Geophys J Int</italic>, 2012, 190(3): 1761 doi: 10.1111/j.1365-246X.2012.05592.x
|
[31] |
Dai F, Jiang P, Xu N W, et al. Focal mechanism determination for microseismic events and its application to the left bank slope of the Baihetan hydropower station in China. <italic>Environ Earth Sci</italic>, 2018, 77(7): 268 doi: 10.1007/s12665-018-7443-1
|
[32] |
喻勇. 質疑巖石巴西圓盤拉伸強度試驗. 巖石力學與工程學報, 2005, 24(7):1150 doi: 10.3321/j.issn:1000-6915.2005.07.011
Yu Y. Questioning the validity of the Brazilian test for determining tensile strength of rocks. <italic>Chin J Rock Mech Eng</italic>, 2005, 24(7): 1150 doi: 10.3321/j.issn:1000-6915.2005.07.011
|
[33] |
Li D Y, Wong L N Y. The Brazilian disc test for rock mechanics applications: review and new insights. <italic>Rock Mech Rock Eng</italic>, 2013, 46(2): 269 doi: 10.1007/s00603-012-0257-7
|
[34] |
Komurlu E, Kesimal A. Evaluation of indirect tensile strength of rocks using different types of jaws. <italic>Rock Mech Rock Eng</italic>, 2015, 48(4): 1723 doi: 10.1007/s00603-014-0644-3
|
[35] |
Erarslan N, Liang Z Z, Williams D J. Experimental and numerical studies on determination of indirect tensile strength of rocks. <italic>Rock Mech Rock Eng</italic>, 2012, 45(5): 739
|
[36] |
郭翔, 王學濱, 白雪元, 等. 加載方式及抗拉強度對巴西圓盤試驗影響的連續?非連續方法數值模擬. 巖土力學, 2017, 38(1):214
Guo X, Wang X B, Bai X Y, et al. Numerical simulation of effects of loading types and tensile strengths on Brazilian disk test by use of a continuum-discontinuum method. <italic>Rock Soil Mech</italic>, 2017, 38(1): 214
|