<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
LIU Ting, LIU Yuan, WANG Xiao-dong, SHEN Jun, ZHANG Ze, XI Shuang, LIU Qun. Preparation and application of polyimide aerogel materials[J]. Chinese Journal of Engineering, 2020, 42(1): 39-47. doi: 10.13374/j.issn2095-9389.2019.08.12.003
Citation: LIU Ting, LIU Yuan, WANG Xiao-dong, SHEN Jun, ZHANG Ze, XI Shuang, LIU Qun. Preparation and application of polyimide aerogel materials[J]. Chinese Journal of Engineering, 2020, 42(1): 39-47. doi: 10.13374/j.issn2095-9389.2019.08.12.003

Preparation and application of polyimide aerogel materials

doi: 10.13374/j.issn2095-9389.2019.08.12.003
More Information
  • Corresponding author: E-mail: 08conyliu@#edu.cn
  • Received Date: 2019-08-12
  • Publish Date: 2020-01-01
  • Polyimide (PI) is a polymer with the imide ring on the major chain. Due to the stable structure of the rigid aromatic ring and conjugation effect of the aromatic heterocyclic ring of the imide ring, its bond energy of the main chain and intermolecular interaction are strengthened. Therefore, it has good mechanical properties, excellent chemical resistance, good dielectric properties and high temperature stability, with applicability as a high temperature engineering polymer with broad application potential. PI products, such as films, coatings, adhesives, photoelectric materials, advanced composite materials, microelectronic devices, separation films and photoresist, have been widely used in electronic information, fire and bulletproofing, aerospace, gas?liquid separation, photoelectric liquid crystals and other fields. Polyimide aerogels (PIA) are cross-linked, three dimensional porous materials made up of polymer molecular chains, combining the excellent properties of PI and aerogels, such as lightweight, low density, high specific surface area, low coefficient of thermal conductivity and a low dielectric constant. Therefore, PIA are being rapidly investigated as an excellent organic aerogel for broad application in aerospace, electronic communications, heat insulations, flame retardants, sound absorption, adsorption cleaning and other fields. Since National Aeronautics and Space Administration (NASA) and other scientific research institutions have developed flexible PIA materials and successfully used them in military and civilian applications, sophisticated weapons, Mars exploration and other application fields, their application research and development has been expanded. Given the characteristics of the PIA materials and the need to improve the preparation process and properties, the preparation method, influencing factors (solvent effect, monomer structure and solid content), application and future development are discussed in this paper.

     

  • loading
  • [1]
    Kistler S S. Coherent expanded aerogels and jellies. Nature, 1931, 127(3211): 741
    [2]
    Pierre A C, Pajonk G M. Chemistry of aerogels and their applications. Chem Rev, 2002, 102(11): 4243 doi: 10.1021/cr0101306
    [3]
    Salimian S, Zadhoush A, Naeimirad M, et al. A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites. Polym Compos, 2018, 39(10): 3383 doi: 10.1002/pc.24412
    [4]
    Schaefer D W, Keefer K D. Structure of random porous materials: silica aerogel. Phys Rev Lett, 1986, 56(20): 2199 doi: 10.1103/PhysRevLett.56.2199
    [5]
    Hench L L, West J K. The sol-gel process. Chem Rev, 1990, 90(1): 33 doi: 10.1021/cr00099a003
    [6]
    Brinker C J, Scherer G W. Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing. Academic Press, 2013
    [7]
    王寶和, 于才淵, 王喜忠. 納米多孔材料的超臨界干燥新技術. 化學工程, 2005, 33(2):13 doi: 10.3969/j.issn.1005-9954.2005.02.004

    Wang B H, Yu C Y, Wang X Z. New technology of supercritical drying of nano-porous materials. Chem Eng China, 2005, 33(2): 13 doi: 10.3969/j.issn.1005-9954.2005.02.004
    [8]
    張澤, 王曉棟, 吳宇, 等. 氣凝膠材料及其應用. 硅酸鹽學報, 2018, 46(10):1426

    Zhang Z, Wang X D, Wu Y, et al. Aerogels and their applications-A short review. J Chin Ceram Soc, 2018, 46(10): 1426
    [9]
    Thapliyal P C, Singh K. Aerogels as promising thermal insulating materials: an overview. J Mater, 2014, 2014: 127049
    [10]
    Ziegler C, Wolf A, Liu W, et al. Modern inorganic aerogels. Angew Chem Int Ed, 2017, 56(43): 13200 doi: 10.1002/anie.201611552
    [11]
    Sayevich V, Cai B, Benad A, et al. 3D assembly of all-inorganic colloidal nanocrystals into gels and aerogels. Angew Chem Int Ed, 2016, 55(21): 6334 doi: 10.1002/anie.201600094
    [12]
    Tan C, Fung B M, Newman J K, et al. Organic aerogels with very high impact strength. Adv Mater, 2001, 13(9): 644 doi: 10.1002/1521-4095(200105)13:9<644::AID-ADMA644>3.0.CO;2-#
    [13]
    Zhu C Z, Shi Q R, Fu S F, et al. Efficient synthesis of MCu (M= Pd, Pt, and Au) aerogels with accelerated gelation kinetics and their high electrocatalytic activity. Adv Mater, 2016, 28(39): 8779 doi: 10.1002/adma.201602546
    [14]
    Zu G Q, Shen J, Wang W Q, et al. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds. ACS Appl Mater Interfaces, 2015, 7(9): 5400 doi: 10.1021/am5089132
    [15]
    Subrahmanyam K S, Sarma D, Malliakas C D, et al. Chalcogenide aerogels as sorbents for radioactive iodine. Chem Mater, 2015, 27(7): 2619 doi: 10.1021/acs.chemmater.5b00413
    [16]
    Shi M J, Tang C G, Yang X D, et al. Superhydrophobic silica aerogels reinforced with polyacrylonitrile fibers for adsorbing oil from water and oil mixtures. RSC Adv, 2017, 7(7): 4039 doi: 10.1039/C6RA26831E
    [17]
    Akimov Y K. Fields of application of aerogels. Instrum Exp Tech, 2003, 46(3): 287 doi: 10.1023/A:1024401803057
    [18]
    Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci, 1989, 24(9): 3221 doi: 10.1007/BF01139044
    [19]
    Alshrah M, Mark L H, Zhao C X, et al. Nanostructure to thermal property relationship of resorcinol formaldehyde aerogels using the fractal technique. Nanoscale, 2018, 10(22): 10564 doi: 10.1039/C8NR01375F
    [20]
    Bhuiyan M A R, Wang L J, Shaid A, et al. Polyurethane-aerogel incorporated coating on cotton fabric for chemical protection. Prog Org Coat, 2019, 131: 100 doi: 10.1016/j.porgcoat.2019.01.041
    [21]
    Cz?onka S, Bertino M F, Ko?ny J, et al. Freeze-drying method as a new approach to the synthesis of polyurea aerogels from isocyanate and water. J Sol-Gel Sci Technol, 2018, 87(3): 685 doi: 10.1007/s10971-018-4769-9
    [22]
    Wang X, Zhang H, Jana S C. Sulfonated syndiotactic polystyrene aerogels: properties and applications. J Mater Chem A, 2013, 1(44): 13989 doi: 10.1039/c3ta13099a
    [23]
    Erlandsson J, Pettersson T, Ingverud T, et al. On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels. J Mater Chem A, 2018, 6(40): 19371 doi: 10.1039/C8TA06319B
    [24]
    Marin M A, Mallepally R R, McHugh M A. Silk fibroin aerogels for drug delivery applications. J Supercrit Fluids, 2014, 91: 84 doi: 10.1016/j.supflu.2014.04.014
    [25]
    陳穎, 邵高峰, 吳曉棟, 等. 聚合物氣凝膠研究進展. 材料導報, 2016, 30(7):55

    Chen Y, Shao G F, Wu X D, et al. Advances in polymer aerogels. Mater Rev, 2016, 30(7): 55
    [26]
    裴學良, 季鵬, 鄭文革, 等. 高性能聚酰亞胺氣凝膠的制備進展. 高分子通報, 2016(9):262

    Pei X L, Ji P, Zheng W G, et al. Progress in preparation of high-performance polyimide aerogels. Polym Bulletin, 2016(9): 262
    [27]
    Ma R, Baldwin A F, Wang C C, et al. Rationally designed polyimides for high-energy density capacitor applications. ACS Appl Mater Interfaces, 2014, 6(13): 10445 doi: 10.1021/am502002v
    [28]
    Sroog C E. Polyimides. Prog Polym Sci, 1991, 16(4): 561 doi: 10.1016/0079-6700(91)90010-I
    [29]
    Kurosawa T, Higashihara T, Ueda M. Polyimide memory: a pithy guideline for future applications. Polym Chem, 2013, 4(1): 16 doi: 10.1039/C2PY20632C
    [30]
    Qian Z C, Wang Z, Chen Y, et al. Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters. J Mater Chem A, 2018, 6(3): 828 doi: 10.1039/C7TA09054D
    [31]
    Landis A L, Naselow A B. Method of Preparing High Molecular Weight Polyimide, Product and Use: U.S. Patent 4645824. 1987-2-24
    [32]
    Meador M A B, Malow E J, Silva R, et al. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. ACS Appl Mater Interfaces, 2012, 4(2): 536 doi: 10.1021/am2014635
    [33]
    Guo H Q, Meador M A B, McCorkle L, et al. Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength. ACS Appl Mater Interfaces, 2012, 4(10): 5422 doi: 10.1021/am301347a
    [34]
    Williams J C, Meador M A B, McCorkle L, et al. Synthesis and properties of step-growth polyamide aerogels cross-linked with triacid chlorides. Chem Mater, 2014, 26(14): 4163 doi: 10.1021/cm5012313
    [35]
    Kawagishi K, Saito H, Furukawa H, et al. Superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels. Macromol Rapid Commun, 2007, 28(1): 96 doi: 10.1002/marc.200600587
    [36]
    Li B Y, Jiang S J, Yu S W, et al. Co-polyimide aerogel using aromatic monomers and aliphatic monomers as mixing diamines. J Sol-Gel Sci Technol, 2018, 88(2): 386 doi: 10.1007/s10971-018-4800-1
    [37]
    Zhu Z X, Yao H J, Dong J X, et al. High-mechanical-strength polyimide aerogels crosslinked with 4,4′-oxydianiline-functionalized carbon nanotubes. Carbon, 2019, 144: 24 doi: 10.1016/j.carbon.2018.11.057
    [38]
    Nguyen B N, Cudjoe E, Douglas A, et al. Polyimide cellulose nanocrystal composite aerogels. Macromolecules, 2016, 49(5): 1692 doi: 10.1021/acs.macromol.5b01573
    [39]
    Zuo L Z, Fan W, Zhang Y F, et al. Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance. Compos Sci Technol, 2017, 139: 57 doi: 10.1016/j.compscitech.2016.12.008
    [40]
    Zhao X F, Zhang J, Wang X Q, et al. Polyimide aerogels crosslinked with MWCNT for enhanced visible-light photocatalytic activity. Appl Surf Sci, 2019, 478: 266 doi: 10.1016/j.apsusc.2019.01.209
    [41]
    Chidambareswarapattar C, Larimore Z, Sotiriou-Leventis C, et al. One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons. J Mater Chem, 2010, 20(43): 9666 doi: 10.1039/c0jm01844a
    [42]
    Leventis N, Chandrasekaran N, Sadekar A G, et al. One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials. J Am Chem Soc, 2009, 131(13): 4576 doi: 10.1021/ja809746t
    [43]
    Xie W, Pan W P, Chuang K. Thermal degradation study of polymerization of monomeric reactants (PMR) polyimides. J Therm Anal Calorim, 2001, 64(2): 477 doi: 10.1023/A:1011566127251
    [44]
    Leventis N, Sotiriou-Leventis C, Mohite D P, et al. Polyimide aerogels by ring-opening metathesis polymerization (ROMP). Chem Mater, 2011, 23(8): 2250 doi: 10.1021/cm200323e
    [45]
    Teo N, Jana S C. Solvent effects on tuning pore structures in polyimide aerogels. Langmuir, 2018, 34(29): 8581 doi: 10.1021/acs.langmuir.8b01513
    [46]
    Wu S, Du A, Huang S M, et al. Effects of monomer rigidity on the microstructures and properties of polyimide aerogels cross-linked with low cost aminosilane. RSC Adv, 2016, 6(27): 22868 doi: 10.1039/C5RA28152K
    [47]
    Viggiano R P, Williams J C, Schiraldi D A, et al. Effect of bulky substituents in the polymer backbone on the properties of polyimide aerogels. ACS Appl Mater Interfaces, 2017, 9(9): 8287 doi: 10.1021/acsami.6b15440
    [48]
    Wu W, Wang K, Zhan M S. Preparation and performance of polyimide-reinforced clay aerogel composites. Ind Eng Chem Res, 2012, 51(39): 12821 doi: 10.1021/ie301622s
    [49]
    Nguyen B N, Meador M A B, Scheiman D, et al. Polyimide aerogels using triisocyanate as cross-linker. ACS Appl Mater Interfaces, 2017, 9(32): 27313 doi: 10.1021/acsami.7b07821
    [50]
    Wu T T, Dong J, Gan F, et al. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups. Appl Surf Sci, 2018, 440: 595 doi: 10.1016/j.apsusc.2018.01.132
    [51]
    Shen D X, Liu J G, Yang H X, et al. Intrinsically highly hydrophobic semi-alicyclic fluorinated polyimide aerogel with ultralow dielectric constants. Chem Lett, 2013, 42(10): 1230 doi: 10.1246/cl.130623
    [52]
    Wu P, Zhang B, Yu Z, et al. Anisotropic polyimide aerogels fabricated by directional freezing. J Appl Polym Sci, 2019, 136(11): 47179 doi: 10.1002/app.47179
    [53]
    Wu Y W, Zhang W C, Yang R J. Ultralight and low thermal conductivity polyimide-polyhedral oligomeric silsesquioxanes aerogels. Macromol Mater Eng, 2018, 303(2): 1700403 doi: 10.1002/mame.201700403
    [54]
    Meador M A B, Agnello M, McCorkle L, et al. Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone. ACS Appl Mater Interfaces, 2016, 8(42): 29073 doi: 10.1021/acsami.6b10248
    [55]
    Xu L, Ma Y Y, Xie J W, et al. Sandwich-type porous polyimide film with improved dielectric, water resistance and mechanical properties. J Mater Sci, 2019, 54(7): 5952 doi: 10.1007/s10853-018-03248-z
    [56]
    Ren R P, Wang Z, Ren J, et al. Highly compressible polyimide/graphene aerogel for efficient oil/water separation. J Mater Sci, 2019, 54(7): 5918 doi: 10.1007/s10853-018-03238-1
    [57]
    Zhang L, Wu J T, Zhang X M, et al. Multifunctional, marvelous polyimide aerogels as highly efficient and recyclable sorbents. RSC Adv, 2015, 5(17): 12592 doi: 10.1039/C4RA15115A
    [58]
    Yan P, Zhou B, Du A. Synthesis of polyimide cross-linked silica aerogels with good acoustic performance. RSC Adv, 2014, 4(102): 58252 doi: 10.1039/C4RA08846H
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)

    Article views (2386) PDF downloads(209) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频