<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
XIONG Jia-shuai, HUANG Jin-feng, XIE Guo-liang, YU Jia-bin, ZHANG Cheng, SHAO Lei, WANG Ya-yu, LI Hong-ying, HE Guang-yu. Effect of electroplating Cr coating on combustion characteristics of TC4 titanium alloy[J]. Chinese Journal of Engineering, 2020, 42(8): 1007-1017. doi: 10.13374/j.issn2095-9389.2019.08.10.001
Citation: XIONG Jia-shuai, HUANG Jin-feng, XIE Guo-liang, YU Jia-bin, ZHANG Cheng, SHAO Lei, WANG Ya-yu, LI Hong-ying, HE Guang-yu. Effect of electroplating Cr coating on combustion characteristics of TC4 titanium alloy[J]. Chinese Journal of Engineering, 2020, 42(8): 1007-1017. doi: 10.13374/j.issn2095-9389.2019.08.10.001

Effect of electroplating Cr coating on combustion characteristics of TC4 titanium alloy

doi: 10.13374/j.issn2095-9389.2019.08.10.001
More Information
  • Corresponding author: E-mail:ustbhuangjf@163.com
  • Received Date: 2019-08-10
  • Publish Date: 2020-09-11
  • Titanium alloys are widely used in aviation industry because of their high specific strength, corrosion resistance, and heat resistance. They are widely used in aircraft engine compressor to improve the thrust-to-weight ratio of an aircraft engine. However, they are easily burning because of their low thermal conductivity and high combustion heat. Under some conditions, titanium blades rubbing with their casees to generate a large amount of heat, and finally burns. To meet the requirements of advanced aero engines and prevent the burning of titanium alloys, we must understand the mechanism of titanium alloys combustion. In this study, TC4 titanium alloys coated with Cr coatings with different thicknesses (0, 15, 30, and 60 μm) were subjected to oxygen-enriched atmosphere under different oxygen pressures. The effect of chrome plating thickness on the combustion properties of TC4 titanium alloys was reported, and microstructure analyses were carried out through SEM, EDS and XRD. Results show that chrome plating thickness has no obvious effect on the critical oxygen pressure of TC4 when the Cr layer thickness is less than 30 μm. The pressure threshold of TC4 increases from 0.07 MPa to 0.15 MPa, when the Cr layer thickness increases to 60 μm, which is about two times higher than the pressure threshold of the substrate. Burning velocity decreases as the Cr layer thickness increases, indicating that a thick Cr layer can effectively inhibit the flame propagation speed. In the underlying action mechanism during combustion, surface Cr enters the molten pool via diffusion and melting and precipitates with Al and V in the alloy to form a Cr-, Al-, and V-rich dispersion cloth phase. The combination of Al and O is reduced, thereby hindering of O diffusion and reducing the burning rate.

     

  • loading
  • [1]
    馮秋元, 郭佳林, 李蒙, 等. 鈦合金電鍍鉻研究現狀及應用. 材料保護, 2018, 51(10):109

    Feng Q Y, Guo J L, Li M, et al. Research status and application of electroplating chromium in titanium alloy. <italic>Mater Prot</italic>, 2018, 51(10): 109
    [2]
    Mi G B, Huang X, Cao J X, et al. Frictional ignition of Ti40 fireproof titanium alloys for aero-engine in oxygen-containing media. <italic>Trans Nonferrous Met Soc China</italic>, 2013, 23(8): 2270 doi: 10.1016/S1003-6326(13)62728-4
    [3]
    Holmes T D, Guilmette R A, Cheng Y S, et al. Aerosol sampling system for collection of capstone depleted uranium particles in a high-energy environment. <italic>Health Phys</italic>, 2009, 96(3): 221 doi: 10.1097/01.HP.0000290610.53663.57
    [4]
    Girodin D, Dudragne G, Courbon J, et al. Statistical analysis of nonmetallic inclusions for the estimation of rolling contact fatigue range and quality control of bearing steel. <italic>J ASTM Int</italic>, 2006, 3(7): 1
    [5]
    Plagens O, Lynn D, Castillo M, et al. Combustion products of bulk aluminum rods burning in high-pressure oxygen // <italic>Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres</italic>: 13<italic>th Volume</italic>. <italic>West Conshohocken</italic>, 2012: 233
    [6]
    Chiffoleau G, Newton B, Holroyd N, et al. Mechanical impact of aluminum alloy gas cylinder pressurized with oxygen. <italic>J ASTM Int</italic>, 2006, 3(5): 1
    [7]
    Hirsch D, Motto S, Peyton G, et al. Proficiency testing for evaluating aerospace materials test anomalies. <italic>J ASTM Int</italic>, 2006, 3(5): 1
    [8]
    Benz F J, Stoltzfus J M. Ignition of metals and alloys in gaseous oxygen by frictional heating // Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Second Volume. Washington D C, 1986: 38
    [9]
    弭光寶, 黃旭, 曹京霞, 等. 航空發動機鈦火試驗技術研究新進展. 航空材料學報, 2016, 36(3):20 doi: 10.11868/j.issn.1005-5053.2016.3.004

    Mi G B, Huang X, Cao J X, et al. Experimental technique of titanium fire in aero-engine. <italic>J Aeron Mater</italic>, 2016, 36(3): 20 doi: 10.11868/j.issn.1005-5053.2016.3.004
    [10]
    Chen Y N, Yang W Q, Bo A, et al. Underlying burning resistant mechanisms for titanium alloy. <italic>Mater Des</italic>, 2018, 156: 588 doi: 10.1016/j.matdes.2018.07.025
    [11]
    Chen Y N, Huo Y Z, Song X D, et al. Burn-resistant behavior and mechanism of Ti14 alloy. <italic>Int J Miner Metall Mater</italic>, 2016, 23(2): 215 doi: 10.1007/s12613-016-1229-9
    [12]
    弭光寶, 黃旭, 曹京霞, 等. 摩擦點火Ti–V–Cr阻燃鈦合金燃燒產物的組織特征. 物理學報, 2016, 65(5):056103 doi: 10.7498/aps.65.056103

    Mi G B, Huang X, Cao J X, et al. Microstructure characteristics of burning products of Ti–V–Cr fireproof titanium alloy by frictional ignition. <italic>Acta Phys Sinica</italic>, 2016, 65(5): 056103 doi: 10.7498/aps.65.056103
    [13]
    弭光寶, 黃旭, 曹京霞, 等. Ti–V–Cr系阻燃鈦合金的抗點燃性能及其理論分析. 金屬學報, 2014, 50(5):575

    Mi G B, Huang X, Cao J X, et al. Ignition resistance performance and its theoretical analysis of Ti–V–Cr type fireproof titanium alloys. <italic>Acta Metall Sin</italic>, 2014, 50(5): 575
    [14]
    歐陽佩旋, 弭光寶, 李培杰, 等. NiCrAl/YSZ/NiCrAl-B.e復合涂層對α+β型高溫鈦合金燃燒產物的影響. 材料工程, 2019, 47(5):43 doi: 10.11868/j.issn.1001-4381.2018.000977

    Ouyang P X, Mi G B, Li P J, et al. Effect of NiCrAl/YSZ/NiCrAl-B.e composite coating on combustion products of high-temperature α+β titanium alloys. <italic>J Mater Eng</italic>, 2019, 47(5): 43 doi: 10.11868/j.issn.1001-4381.2018.000977
    [15]
    Zhang P Z, Xu Z, Zhang G H, et al. Surface plasma chromized burn-resistant titanium alloy. <italic>Surf Coat Technol</italic>, 2007, 201(9-11): 4884 doi: 10.1016/j.surfcoat.2006.07.078
    [16]
    張樂, 于月光, 任先京, 等. 鈦合金基體上阻燃涂層的研究進展. 鈦工業進展, 2008, 25(6):6 doi: 10.3969/j.issn.1009-9964.2008.06.003

    Zhang L, Yu Y G, Ren X J, et al. Research progress of sustained combustion coatings on titanium substrates. <italic>Titanium Ind Prog</italic>, 2008, 25(6): 6 doi: 10.3969/j.issn.1009-9964.2008.06.003
    [17]
    郭初陽, 郭喜軍, 王永紅, 等. 鈦合金零件鍍鉻工藝及控制研究. 新技術新工藝, 2015(10):96 doi: 10.3969/j.issn.1003-5311.2015.10.028

    Guo C Y, Guo X J, Wang Y H, et al. Process and control research of titanium alloy parts chrome plating. <italic>New Technol New Process</italic>, 2015(10): 96 doi: 10.3969/j.issn.1003-5311.2015.10.028
    [18]
    楊雕, 陳志堅, 劉朋科, 等. 某迫擊炮身管壽命分析及預測. 火炮發射與控制學報, 2017, 38(4):87

    Yang D, Chen Z J, Liu P K, et al. Analysis and prediction of the service life of a mortar tube. <italic>J Gun Launch Control</italic>, 2017, 38(4): 87
    [19]
    American Society for Testing Material, G--04 Committee. ASTM G124—10 Standard Test Method for Determining the Burning Behavior of Metallic Materials in Oxygen-enriched Atmospheres. West Conshohocken: ASTM International, 2010
    [20]
    Hust J G, Clark A F. A survey of compatibility of materials with high pressure oxygen service. <italic>Cryogenics</italic>, 1973, 13(6): 325 doi: 10.1016/0011-2275(73)90057-X
    [21]
    王宏亮, 黃進峰, 連勇, 等. 高溫合金GH4169和GH4202在富氧環境中的燃燒行為. 工程科學學報, 2016, 38(9):1288

    Wang H L, Huang J F, Lian Y, et al. Combustion behavior of GH4169 and GH4202 superalloys in oxygen-enriched Atmosphere. <italic>Chin J Eng</italic>, 2016, 38(9): 1288
    [22]
    陳鴻海. 金屬腐蝕學. 北京: 北京理工大學出版社, 1995

    Chen H H. Metal Corrosion. Beijing: Beijing Institute of Technology Press, 1995
    [23]
    Ouyang P X, Mi G B, Cao J X, et al. Microstructure characteristics after combustion and fireproof mechanism of TiAl-based alloys. <italic>Mater Today Commun</italic>, 2018, 16: 364 doi: 10.1016/j.mtcomm.2018.07.012
    [24]
    Wang W X, Xue Z L, Song S Q, et al. Research on smelting vanadium steel by silicothermic reduction direct alloying with V<sub>2</sub>O<sub>5</sub>. <italic>Adv Mater Res</italic>, 2012, 476-478: 164 doi: 10.4028/www.scientific.net/AMR.476-478.164
    [25]
    王標, 田偉. TC4鈦合金燃燒形貌和機理分析. 燃氣渦輪試驗與研究, 2013, 26(3):50 doi: 10.3969/j.issn.1672-2620.2013.03.011

    Wang B, Tian W. Combustion morphology and mechanism analysis of titanium alloy TC4. <italic>Gas Turbine Exp Res</italic>, 2013, 26(3): 50 doi: 10.3969/j.issn.1672-2620.2013.03.011
    [26]
    葛志明. 鈦的二元系相圖. 北京: 國防工業出版社, 1977

    Ge Z M. Phase Diagram of Binary System of Titanium. Beijing: National Defense Industry Press, 1977
    [27]
    Li B, Ding R D, Shen Y F, et al. Preparation of Ti–Cr and Ti–Cu flame-retardant coatings on Ti–6Al–4V using a high-energy mechanical alloying method: A preliminary research. <italic>Mater Des</italic>, 2012, 35: 25 doi: 10.1016/j.matdes.2011.09.017
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article views (1175) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频