<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
TAO Zhang, WU Ling-mei, ZHANG Ya-fei, GAO Zhi-meng, YANG Mu. Preparation and properties of biomass porous carbon composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 113-119. doi: 10.13374/j.issn2095-9389.2019.08.06.002
Citation: TAO Zhang, WU Ling-mei, ZHANG Ya-fei, GAO Zhi-meng, YANG Mu. Preparation and properties of biomass porous carbon composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 113-119. doi: 10.13374/j.issn2095-9389.2019.08.06.002

Preparation and properties of biomass porous carbon composite phase change materials

doi: 10.13374/j.issn2095-9389.2019.08.06.002
More Information
  • Corresponding author: E-mail: yangmu@ustb.edu.cn
  • Received Date: 2019-08-06
  • Publish Date: 2020-01-01
  • Presently, combining porous and high-thermal-conductivity matrices with phase change materials is widely used to improve the comprehensive properties of organic composite phase change materials. Porous carbon, as a carrier material with strong load capacity and good thermal conductivity, has become a focus of interest in research. Nevertheless, how to easily prepare this material in a green and inexpensive way still remains a challenge. Subsequent to heat treatment at gradient temperature and nitrogen atmosphere, the biomass materials were carbonized and further transformed to graphite. Then, the porous high-thermal-conductivity carbon materials were obtained by replicating the structure of biomass natural materials. Finally, the biomass porous carbon/paraffin composite phase change materials were prepared using vacuum melting impregnation method. The obtained biomass porous carbon and composite phase change materials were characterized by scanning electron microscope (SEM), flourier transformation infrared spectroscopy (FTIR), thermal gravity analysis (TGA), X-ray diffractometer (XRD), Raman spectroscopy, mercury intrusion porosimetry (MIP), differential scanning calorimetry (DSC), and hot-disk thermal analysis. The characterization results show that the structure of the biomass porous carbon material is well preserved, which ensures the efficient and stable load of organic phase change materials. In terms of heat transfer efficiency as compared with pure paraffin materials, the thermal conductivities of porous pine carbon and bamboo carbon/paraffin composite phase change materials are increased by 100% and 216%, respectively, reaching 0.48 W·m?1·K?1 and 0.76 W·m?1·K?1, respectively. Based on these results, by comparing the loading amount of paraffin, phase change enthalpy, and thermal conductivity of the composite phase change materials prepared from pine and bamboo, the influence mechanism of the biomass structure on the properties of the composite phase change materials is further explored. In summary, unlike the traditional composite phase change materials, the preparation process in this experiment is simple, the raw material sources are widely available, cheap, and green, and the thermal conductivity is significantly improved. Therefore, the proposed preparation process has a broad application prospect in the future.

     

  • loading
  • [1]
    Kenisarin M M, Kenisarina K M. Form-stable phase change materials for thermal energy storage. Renewable Sustainable Energy Rev, 2012, 16(4): 1999 doi: 10.1016/j.rser.2012.01.015
    [2]
    鐘麗敏, 楊穆, 欒奕, 等. 石蠟/二氧化硅復合相變材料的制備及其性能. 工程科學學報, 2015, 37(7):936

    Zhong L M, Yang M, Luan Y, et al. Preparation and properties of paraffin/SiO2 composite phase change materials. Chin J Eng, 2015, 37(7): 936
    [3]
    高緒濤, 趙愛民. 形變過程中TRIP效應的相變熱動態研究. 工程科學學報, 2018, 40(1):59

    Gao X T, Zhao A M. Dynamic study on phase-change heat of TRIP effect during deformation. Chin J Eng, 2018, 40(1): 59
    [4]
    Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci, 2014, 65: 67 doi: 10.1016/j.pmatsci.2014.03.005
    [5]
    Xiao X, Zhang P, Li M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. Int J Therm Sci, 2014, 81: 94 doi: 10.1016/j.ijthermalsci.2014.03.006
    [6]
    Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy, 2013, 112: 1357 doi: 10.1016/j.apenergy.2013.04.050
    [7]
    Mehrali M, Latibari S T, Mehrali M, et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers Manage, 2013, 67: 275 doi: 10.1016/j.enconman.2012.11.023
    [8]
    水麗, 張凱, 于宏. 石墨烯含量對石墨烯/Al?15Si?4Cu?Mg復合材料微觀組織和力學性能的影響. 工程科學學報, 2019, 41(9):1162

    Shui L, Zhang K, Yu H. Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al?15Si?4Cu?Mg matrix composites. Chin J Eng, 2019, 41(9): 1162
    [9]
    Tang J, Yang M, Dong W J, et al. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity. RSC Adv, 2016, 6(46): 40106 doi: 10.1039/C6RA04059D
    [10]
    霍慶生, 金嘉琦, 王曉強, 等. 碳納米紙復合材料的拉伸應變協同性. 工程科學學報, 2018, 40(6):714

    Huo Q S, Jin J Q, Wang X Q, et al. Tensile strain synergistic of carbon nanotube buckypaper composites. Chin J Eng, 2018, 40(6): 714
    [11]
    Peng X W, Zhang L, Chen Z X, et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv Mater, 2019, 31(16): 1900341 doi: 10.1002/adma.201900341
    [12]
    De S, Balu A M, van der Waal J C, et al. Biomass-derived porous carbon materials: Synthesis and catalytic applications. Chem Cat Chem, 2015, 7(11): 1608
    [13]
    Yang Z W, Deng Y, Li J H. Preparation of porous carbonized woods impregnated with lauric acid as shape-stable composite phase change materials. Appl Therm Eng, 2019, 150: 967 doi: 10.1016/j.applthermaleng.2019.01.063
    [14]
    Atinafu D G, Dong W J, Wang J J, et al. Synthesis and characterization of paraffin/metal organic gel derived porous carbon/boron nitride composite phase change materials for thermal energy storage. Eur J Inorg Chem, 2018, 2018(48): 5167 doi: 10.1002/ejic.201800811
    [15]
    Li Z T, Wu Y X, Zhuang B S, et al. Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity. Appl Energy, 2017, 206: 1147 doi: 10.1016/j.apenergy.2017.10.046
    [16]
    Mun S P, Cai Z Y, Zhang J L. Preparation of Fe-cored carbon nanomaterials from mountain pine beetle-killed pine wood. Mater Lett, 2015, 142: 45 doi: 10.1016/j.matlet.2014.11.053
    [17]
    Mun S P, Cai Z Y, Watanabe F, et al. Thermal conversion of pine wood char to carbon nanomaterials in the presence of iron nanoparticles. Forest Prod J, 2012, 62(6): 462 doi: 10.13073/FPJ-D-12-00028.1
    [18]
    Yang H Y, Wang Y Z, Yu Q Q, et al. Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage. Appl Energy, 2018, 212: 455 doi: 10.1016/j.apenergy.2017.12.006
    [19]
    Nabais J M V, Carrott P J M, Carrott M M L R, et al. Preparation and modification of activated carbon fibres by microwave heating. Carbon, 2004, 42(7): 1315 doi: 10.1016/j.carbon.2004.01.033
    [20]
    Ferrari A C. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun, 2007, 143(1-2): 47 doi: 10.1016/j.ssc.2007.03.052
    [21]
    Yang H Y, Wang Y Z, Yu Q Q, et al. Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage. Energy, 2018, 159: 929 doi: 10.1016/j.energy.2018.06.207
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (1533) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频