<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
FU Qiang, ZHANG Shu-yu, WANG Jiu-bin, FENG Fu-sen. Indoor fixed-height control for bio-inspired flapping-wing aerial vehicles based on off-board monocular vision[J]. Chinese Journal of Engineering, 2020, 42(2): 249-256. doi: 10.13374/j.issn2095-9389.2019.08.03.002
Citation: FU Qiang, ZHANG Shu-yu, WANG Jiu-bin, FENG Fu-sen. Indoor fixed-height control for bio-inspired flapping-wing aerial vehicles based on off-board monocular vision[J]. Chinese Journal of Engineering, 2020, 42(2): 249-256. doi: 10.13374/j.issn2095-9389.2019.08.03.002

Indoor fixed-height control for bio-inspired flapping-wing aerial vehicles based on off-board monocular vision

doi: 10.13374/j.issn2095-9389.2019.08.03.002
More Information
  • Corresponding author: E-mail: fuqiang@ustb.edu.cn
  • Received Date: 2019-08-03
  • Publish Date: 2020-02-01
  • The flapping-wing aerial vehicle (FWAV) is a new kind of aerial vehicle that imitates the flapping wings of birds or insects during flight and has the advantages of flexible flight, high flight efficiency, and good concealment compared with the fixed-wing and the rotary-wing aerial vehicles. Therefore, the FWAV has attracted considerable attention in recent years. However, the flight mechanism of the FWAV is complex and has many motion parameters with strong coupling. Thus, establishing a precise and practical motion model is difficult. At the same time, given the limited weight and load capacity of small FWAVs, it cannot carry accurate but heavy positioning equipment. Thus, many problems in autonomous flight control of FWAVs need to be addressed at this stage. For the fixed-height flight of FWAVs, an indoor fixed-height control system based on off-board monocular vision was designed. First, image sequences of the FWAV were obtained using the off-board monocular camera. Then, the ground station software based on Qt received the images, detected the light-emitting feature point on the FWAV, and obtained the pixel coordinates of the feature point on each image using the OpenCV image processing algorithms. On the basis of the Kalman filter, the image state estimator of the feature point was established to reduce the environmental interference and solve the temporal missing data problem of the feature point. Finally, the conventional and single-neuron PID control systems were established, where the motor speed of the FWAV was controlled by Bluetooth, to achieve image-based indoor fixed-height flight of the FWAV. Experimental results show that the fixed-height flight control system designed in this study can keep the image coordinates of the feature point of the FWAV at the center of the camera image. For the step signal, the response speed of the single-neuron PID control system is slightly slower than that of the conventional PID control system. However, the control accuracy of the single-neuron PID control system is better than that of the conventional PID controller, with a maximum relative error of 3%.

     

  • loading
  • [1]
    賀威, 丁施強, 孫長銀. 撲翼飛行器的建模與控制研究進展. 自動化學報, 2017, 43(5):685

    He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Automatica Sinica, 2017, 43(5): 685
    [2]
    Mackenzie D. A flapping of wings. Science, 2012, 335(6075): 1430 doi: 10.1126/science.335.6075.1430
    [3]
    Jackowski Z J. Design and Construction of An Autonomous Ornithopter [Dissertation]. Massachusetts: Massachusetts Institute of Technology, 2009
    [4]
    Ryu S, Kwon U, Kim H J. Autonomous flight and vision-based target tracking for a flapping-wing MAV // 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, 2016: 5645
    [5]
    Lin S H, Hsiao F Y, Chen C L, et al. Altitude control of flapping-wing MAV using vision-based navigation // Proceedings of the 2010 American Control Conference. Baltimore, 2010: 21
    [6]
    Yang W Q, Wang L G, Song B F. Dove: a biomimetic flapping-wing micro air vehicle. Int J Micro Air Vehicles, 2018, 10(1): 70 doi: 10.1177/1756829317734837
    [7]
    He W, Huang H F, Chen Y N, et al. Development of an autonomous flapping-wing aerial vehicle. Sci China Inf Sci, 2017, 60(6): 063201 doi: 10.1007/s11432-017-9077-1
    [8]
    曾銳, 昂海松. 仿鳥復合振動的撲翼氣動分析. 南京航空航天大學學報, 2003, 35(1):6 doi: 10.3969/j.issn.1005-2615.2003.01.002

    Zeng R, Ang H S. Aerodynamic computation of flapping-wing simulating bird wings. J Nanjing Univ Aeronautics Astronautics, 2003, 35(1): 6 doi: 10.3969/j.issn.1005-2615.2003.01.002
    [9]
    De Croon G C H E, Per?in M, Remes B D W, et al. The DelFly. Dordrecht: Springer Netherlands, 2016
    [10]
    吳顯亮, 石宗英, 鐘宜生. 無人機視覺導航研究綜述. 系統仿真學報, 2010, 22(增刊1): 62

    Wu X L, Shi Z Y, Zhong Y S. An overview of vision-based UAV navigation. J Syst Simul, 2010, 22(Suppl 1): 62
    [11]
    Han J G, Shoa L, Xu D, et al. Enhanced computer vision with Microsoft Kinect sensor: a review. IEEE Trans Cybernetics, 2013, 43(5): 1318 doi: 10.1109/TCYB.2013.2265378
    [12]
    倪章松, 顧藝, 柳慶林, 等. 大視場雙目立體視覺柔性標定. 光學精密工程, 2017, 25(7):1882

    Ni Z S, Gu Y, Liu Q L, et al. Flexible calibration method for binocular stereo vision in large field of view. Opt Precision Eng, 2017, 25(7): 1882
    [13]
    劉亞菲, 郭慧, 聶冬金, 等. 雙目立體視覺系統測量精度的分析. 東華大學學報: 自然科學版, 2012, 38(5):572

    Liu Y F, Guo H, Nie D J, et al. Analysis on measurement accuracy of binocular stereo vision system. J Donghua Univ Nat Sci, 2012, 38(5): 572
    [14]
    趙萍, 李永奎, 田素博, 等. 雙目視覺測量系統結構參數理論與試驗研究. 機械設計, 2013, 30(2):64 doi: 10.3969/j.issn.1001-2354.2013.02.015

    Zhao P, Li Y K, Tian S B, et al. Theoretical and experimental research of structural parameters of binocular vision measuring system. J Mach Des, 2013, 30(2): 64 doi: 10.3969/j.issn.1001-2354.2013.02.015
    [15]
    Windolf M, G?tzen N, Morlock M. Systematic accuracy and precision analysis of video motion capturing systems—exemplified on the Vicon-460 system. J Biomech, 2008, 41(12): 2776 doi: 10.1016/j.jbiomech.2008.06.024
    [16]
    馬頌德, 張正友. 計算機視覺?計算理論與算法基礎. 北京: 科學出版社, 1998

    Ma S D, Zhang Z Y. Computer Vision: Fundamentals of Computational Theory and Algorithms. Beijing: Science Press, 1998
    [17]
    丁軍, 徐用懋. 單神經元自適應PID控制器及其應用. 控制工程, 2004, 11(1):27 doi: 10.3969/j.issn.1671-7848.2004.01.008

    Ding J, Xu Y M. Single neuron adaptive PID controller and its applications. Control Eng China, 2004, 11(1): 27 doi: 10.3969/j.issn.1671-7848.2004.01.008
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (1716) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频