Citation: | HAN Jin-liang, ZHANG Yue-jun, WEN Liang, ZHANG Hui-hong. High-performance full adder design based on SRPL[J]. Chinese Journal of Engineering, 2020, 42(8): 1065-1073. doi: 10.13374/j.issn2095-9389.2019.08.03.001 |
[1] |
Jitendra K S, Srinivasulu A, Singh B P. A new low-power full-adder cell for low voltage using CNTFETs // 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). Targoviste, 2017: 1
|
[2] |
Tirumalasetty V R, Machupalli M R. Design and analysis of low power high-speed 1-bit full adder cells for VLSI applications. <italic>Int J Electron</italic>, 2019, 106(4): 521 doi: 10.1080/00207217.2018.1545256
|
[3] |
Mewada M, Zaveri M, Thakker R. Improving the performance of transmission gate and hybrid CMOS full adders in chain and tree structure architectures. <italic>Integration</italic>, 2019, 69: 381 doi: 10.1016/j.vlsi.2019.09.002
|
[4] |
Shalem R, John E, John L K. A novel low power energy recovery full adder cell // Proceedings 9th Great Lakes Symposium on VLSI. Ypsilanti, 1999: 380
|
[5] |
Dokania V, Verma R, Guduri M, et al. Design of 10t full adder cell for ultralow-power applications. <italic>Ain Shams Eng J</italic>, 2018, 9(4): 2363 doi: 10.1016/j.asej.2017.05.004
|
[6] |
Suman M, Samanta J, Chowdhury D, et al. Relative performance analysis of different CMOS full adder circuits. <italic>Int J Comput Appl</italic>, 2015, 114(6): 8
|
[7] |
Brzozowski I, Kos A. Designing of low-power data oriented adders. <italic>Microelectron J</italic>, 2014, 45(9): 1177 doi: 10.1016/j.mejo.2014.04.022
|
[8] |
Mehrabani Y S, Eshghi M. A symmetric, multi-threshold, high-speed and efficient-energy 1-bit full adder cell design using CNFET technology. <italic>Circuits Syst Signal Process</italic>, 2015, 34(3): 739 doi: 10.1007/s00034-014-9887-1
|
[9] |
Basireddy H R, Challa K, Nikoubin T. Hybrid logical effort for hybrid logic style full adders in multistage structures. <italic>IEEE Trans Very Large Scale Integr Syst</italic>, 2019, 27(5): 1138 doi: 10.1109/TVLSI.2018.2889833
|
[10] |
Mehrabani Y S, Eshghi M. Noise and process variation tolerant, low-power, high-speed, and low-energy full adders in CNFET technology. <italic>IEEE Trans Very Large Scale Integr Syst</italic>, 2016, 24(11): 3268 doi: 10.1109/TVLSI.2016.2540071
|
[11] |
Ahmadpour S S, Mosleh M, Heikalabad S R. A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. <italic>Physica B-Condensed Matter</italic>, 2018, 550: 383 doi: 10.1016/j.physb.2018.09.029
|
[12] |
Ramachandran S, Sanapala K. Ultra-low-voltage GDI-based hybrid full adder design for area and energy-efficient computing systems. <italic>IET Circuits Devices Syst</italic>, 2019, 13(4): 465 doi: 10.1049/iet-cds.2018.5559
|
[13] |
Ahmed R U, Saha P. Implementation topology of full adder cells. <italic>Procedia Comput Sci</italic>, 2019, 165: 676 doi: 10.1016/j.procs.2020.01.063
|
[14] |
Amini-Valashani M, Ayat M, Mirzakuchaki S. Design and analysis of a novel low-power and energy-efficient 18T hybrid full adder. <italic>Microelectron J</italic>, 2018, 74: 49 doi: 10.1016/j.mejo.2018.01.018
|
[15] |
Valashani M A, Mirzakuchaki S. A novel fast, low-power and high-performance XOR-XNOR cell // 2016 IEEE International Symposium on Circuits and Systems (ISCAS). Montreal, 2016: 694
|
[16] |
Malini P, Balaji G N, Boopathiraja K, et al. Design of swing dependent XOR-XNOR gates based hybrid full adder // 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS). Coimbatore, 2019: 1164
|
[17] |
Kandpal J, Tomar A, Adhikari S, et al. Design of low power and high speed XOR/XNOR circuit using 90 nm CMOS technology // 2019 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC). Shillong, 2019: 221
|
[18] |
Kumar P, Sharma R K. Low voltage high performance hybrid full adder. <italic>Eng Sci Technol Int J</italic>, 2016, 19(1): 559
|
[19] |
Naseri H, Timarchi S. Low-power and fast full adder by exploring new XOR and XNOR gates. <italic>IEEE Trans Very Large Scale Integr </italic>(<italic>VLSI</italic>)<italic>Syst</italic>, 2018, 26(8): 1481 doi: 10.1109/TVLSI.2018.2820999
|
[20] |
Goel S, Kumar A, Bayoumi M A. Design of robust, energy-efficient full adders for deep-submicrometer design using hybrid-CMOS logic style. <italic>IEEE Trans Very Large Scale Integr </italic>(<italic>VLSI</italic>)<italic>Syst</italic>, 2006, 14(12): 1309 doi: 10.1109/TVLSI.2006.887807
|
[21] |
Radhakrishnan D. Low-voltage low-power CMOS full adder. <italic>IEE Proc-Circuits</italic>,<italic>Devices Syst</italic>, 2001, 148(1): 19 doi: 10.1049/ip-cds:20010170
|
[22] |
Shanmugam Y, Mangalam H. Comparative analysis of design of low power full adder structures for deep sub-micron technology. <italic>Asian J Res Social Sci Humanities</italic>, 2017, 7(2): 141
|
[23] |
Chang C H, Gu J M, Zhang M Y. A review of 0.18-/spl mu/m full adder performances for tree structured arithmetic circuits. <italic>IEEE Trans Very Large Scale Integr </italic>(<italic>VLSI</italic>)<italic>Syst</italic>, 2005, 13(6): 686 doi: 10.1109/TVLSI.2005.848806
|
[24] |
Navi K, Maeen M, Foroutan V, et al. A novel low-power full-adder cell for low voltage. <italic>Integr VLSI J</italic>, 2009, 42(4): 457 doi: 10.1016/j.vlsi.2009.02.001
|
[25] |
Bhattacharyya P, Kundu B, Ghosh S, et al. Performance analysis of a low-power high-speed hybrid 1-bit full adder circuit. <italic>IEEE Trans Very Large Scale Integr </italic>(<italic>VLSI</italic>)<italic>Syst</italic>, 2015, 23(10): 2001 doi: 10.1109/TVLSI.2014.2357057
|