<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
HAN Jin-liang, ZHANG Yue-jun, WEN Liang, ZHANG Hui-hong. High-performance full adder design based on SRPL[J]. Chinese Journal of Engineering, 2020, 42(8): 1065-1073. doi: 10.13374/j.issn2095-9389.2019.08.03.001
Citation: HAN Jin-liang, ZHANG Yue-jun, WEN Liang, ZHANG Hui-hong. High-performance full adder design based on SRPL[J]. Chinese Journal of Engineering, 2020, 42(8): 1065-1073. doi: 10.13374/j.issn2095-9389.2019.08.03.001

High-performance full adder design based on SRPL

doi: 10.13374/j.issn2095-9389.2019.08.03.001
More Information
  • The adder circuit is the core component of the high-performance system-on-chip (SoC). It is also important in image and voice encryption. The full adder circuit is a basic unit with a very high reuse rate among all the units. Therefore, the design of an adder with high energy efficiency is of great significance for the optimization of digital circuit systems. In recent years, numerous researchers have studied the design of advanced adder circuits, which are characterized by high speed and low power consumption. To reduce the hardware overhead, an increasing number of adder circuits utilize the transmission tube logic to reduce the number of transistors. However, this method also brings about several negative effects, such as threshold loss and performance degradation. In this paper, by studying the swing recovery logic and full adder circuit, we proposed a full adder design scheme based on swing restored pass-transistor logic (SRPL). First, the threshold loss mechanism of the circuit was analyzed, and the characteristics of the high-efficiency transmission of high-level and low-level transistors were considered; then the design method of the swing recovery transmission tube logic was developed. We used a symmetric structure to design an XOR/XNOR circuit without delay deviation output. The two-shot MOS tube was used to compensate the threshold loss to realize the full swing output of the XOR/XNOR circuit. Finally, we fused the designed XOR/XNOR circuit to the full adder structure and used the 4T XOR sum circuit and the improved transmission gate carry circuit to implement the high-performance full adder for swing recovery. In the TSMC 65 nm process, the logic function of our method was verified by HSPICE simulation. Compared with the conventional approach, the delay is reduced by 10.8%, and the power-delay product (PDP) is reduced by more than 13.5%. The design method of low delay and full swing output of the SRPL circuit can be further applied to the design of other logic circuits, further promoting the practical process of the SRPL circuit.

     

  • loading
  • [1]
    Jitendra K S, Srinivasulu A, Singh B P. A new low-power full-adder cell for low voltage using CNTFETs // 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). Targoviste, 2017: 1
    [2]
    Tirumalasetty V R, Machupalli M R. Design and analysis of low power high-speed 1-bit full adder cells for VLSI applications. <italic>Int J Electron</italic>, 2019, 106(4): 521 doi: 10.1080/00207217.2018.1545256
    [3]
    Mewada M, Zaveri M, Thakker R. Improving the performance of transmission gate and hybrid CMOS full adders in chain and tree structure architectures. <italic>Integration</italic>, 2019, 69: 381 doi: 10.1016/j.vlsi.2019.09.002
    [4]
    Shalem R, John E, John L K. A novel low power energy recovery full adder cell // Proceedings 9th Great Lakes Symposium on VLSI. Ypsilanti, 1999: 380
    [5]
    Dokania V, Verma R, Guduri M, et al. Design of 10t full adder cell for ultralow-power applications. <italic>Ain Shams Eng J</italic>, 2018, 9(4): 2363 doi: 10.1016/j.asej.2017.05.004
    [6]
    Suman M, Samanta J, Chowdhury D, et al. Relative performance analysis of different CMOS full adder circuits. <italic>Int J Comput Appl</italic>, 2015, 114(6): 8
    [7]
    Brzozowski I, Kos A. Designing of low-power data oriented adders. <italic>Microelectron J</italic>, 2014, 45(9): 1177 doi: 10.1016/j.mejo.2014.04.022
    [8]
    Mehrabani Y S, Eshghi M. A symmetric, multi-threshold, high-speed and efficient-energy 1-bit full adder cell design using CNFET technology. <italic>Circuits Syst Signal Process</italic>, 2015, 34(3): 739 doi: 10.1007/s00034-014-9887-1
    [9]
    Basireddy H R, Challa K, Nikoubin T. Hybrid logical effort for hybrid logic style full adders in multistage structures. <italic>IEEE Trans Very Large Scale Integr Syst</italic>, 2019, 27(5): 1138 doi: 10.1109/TVLSI.2018.2889833
    [10]
    Mehrabani Y S, Eshghi M. Noise and process variation tolerant, low-power, high-speed, and low-energy full adders in CNFET technology. <italic>IEEE Trans Very Large Scale Integr Syst</italic>, 2016, 24(11): 3268 doi: 10.1109/TVLSI.2016.2540071
    [11]
    Ahmadpour S S, Mosleh M, Heikalabad S R. A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. <italic>Physica B-Condensed Matter</italic>, 2018, 550: 383 doi: 10.1016/j.physb.2018.09.029
    [12]
    Ramachandran S, Sanapala K. Ultra-low-voltage GDI-based hybrid full adder design for area and energy-efficient computing systems. <italic>IET Circuits Devices Syst</italic>, 2019, 13(4): 465 doi: 10.1049/iet-cds.2018.5559
    [13]
    Ahmed R U, Saha P. Implementation topology of full adder cells. <italic>Procedia Comput Sci</italic>, 2019, 165: 676 doi: 10.1016/j.procs.2020.01.063
    [14]
    Amini-Valashani M, Ayat M, Mirzakuchaki S. Design and analysis of a novel low-power and energy-efficient 18T hybrid full adder. <italic>Microelectron J</italic>, 2018, 74: 49 doi: 10.1016/j.mejo.2018.01.018
    [15]
    Valashani M A, Mirzakuchaki S. A novel fast, low-power and high-performance XOR-XNOR cell // 2016 IEEE International Symposium on Circuits and Systems (ISCAS). Montreal, 2016: 694
    [16]
    Malini P, Balaji G N, Boopathiraja K, et al. Design of swing dependent XOR-XNOR gates based hybrid full adder // 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS). Coimbatore, 2019: 1164
    [17]
    Kandpal J, Tomar A, Adhikari S, et al. Design of low power and high speed XOR/XNOR circuit using 90 nm CMOS technology // 2019 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC). Shillong, 2019: 221
    [18]
    Kumar P, Sharma R K. Low voltage high performance hybrid full adder. <italic>Eng Sci Technol Int J</italic>, 2016, 19(1): 559
    [19]
    Naseri H, Timarchi S. Low-power and fast full adder by exploring new XOR and XNOR gates. <italic>IEEE Trans Very Large Scale Integr </italic>(<italic>VLSI</italic>)<italic>Syst</italic>, 2018, 26(8): 1481 doi: 10.1109/TVLSI.2018.2820999
    [20]
    Goel S, Kumar A, Bayoumi M A. Design of robust, energy-efficient full adders for deep-submicrometer design using hybrid-CMOS logic style. <italic>IEEE Trans Very Large Scale Integr </italic>(<italic>VLSI</italic>)<italic>Syst</italic>, 2006, 14(12): 1309 doi: 10.1109/TVLSI.2006.887807
    [21]
    Radhakrishnan D. Low-voltage low-power CMOS full adder. <italic>IEE Proc-Circuits</italic>,<italic>Devices Syst</italic>, 2001, 148(1): 19 doi: 10.1049/ip-cds:20010170
    [22]
    Shanmugam Y, Mangalam H. Comparative analysis of design of low power full adder structures for deep sub-micron technology. <italic>Asian J Res Social Sci Humanities</italic>, 2017, 7(2): 141
    [23]
    Chang C H, Gu J M, Zhang M Y. A review of 0.18-/spl mu/m full adder performances for tree structured arithmetic circuits. <italic>IEEE Trans Very Large Scale Integr </italic>(<italic>VLSI</italic>)<italic>Syst</italic>, 2005, 13(6): 686 doi: 10.1109/TVLSI.2005.848806
    [24]
    Navi K, Maeen M, Foroutan V, et al. A novel low-power full-adder cell for low voltage. <italic>Integr VLSI J</italic>, 2009, 42(4): 457 doi: 10.1016/j.vlsi.2009.02.001
    [25]
    Bhattacharyya P, Kundu B, Ghosh S, et al. Performance analysis of a low-power high-speed hybrid 1-bit full adder circuit. <italic>IEEE Trans Very Large Scale Integr </italic>(<italic>VLSI</italic>)<italic>Syst</italic>, 2015, 23(10): 2001 doi: 10.1109/TVLSI.2014.2357057
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (1811) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频