Citation: | ZHANG Zhuang, CAO Ling-ling, LIN Wen-hui, SUN Jian-kun, FENG Xiao-ming, LIU Qing. Improved prediction model for BOF end-point manganese content based on IPSO-RELM method[J]. Chinese Journal of Engineering, 2019, 41(8): 1052-1060. doi: 10.13374/j.issn2095-9389.2019.08.011 |
[1] |
Takawa T, Katayama K, Hoteiya M, et al. Mathematical model of end point control for the top and bottom blowing process in BOF. Trans ISIJ, 1987, 27(12): 951 doi: 10.2355/isijinternational1966.27.951
|
[2] |
He F, He D F, Xu A J, et al. Hybridmodel of molten steel temperature prediction based on ladle heat status and artificial neural network. J Iron Steel Res Int, 2014, 21(2): 181 doi: 10.1016/S1006-706X(14)60028-5
|
[3] |
Wang H B, Cai J, Feng K. Predicting theendpoint phosphorus content of molten steel in BOF by two-stage hybrid method. J Iron Steel Res Int, 2014, 21(Suppl 1): 65 http://www.sciencedirect.com/science/article/pii/S1006706X14601230
|
[4] |
Cox I J, Lewis R W, Ransing R S, et al. Application of neural computing in basic oxygen steelmaking. J Mater Process Technol, 2002, 120(1-3): 310 doi: 10.1016/S0924-0136(01)01136-0
|
[5] |
張貴玉, 萬雪峰, 林東, 等. 基于爐氣分析的熔池碳含量及溫度變化研究. 鋼鐵研究學報, 2006, 18(11): 56 doi: 10.3321/j.issn:1001-0963.2006.11.014
Zhang G Y, Wan X F, Lin D, et al. Carbon content and temperature variation of bath based on exhaust gas analysis. J Iron Steel Res, 2006, 18(11): 56 doi: 10.3321/j.issn:1001-0963.2006.11.014
|
[6] |
高輪武志, 佐藤光信, 岡田剛, 等. 數式モデルによる転爐自動吹錬技術の開発. 鉄と鋼, 1988, 74(4): 664
Takawa T, Sato M, Okada T, et al. Development of automatic blowing technique in BOF based on a mathematical model. Tetsu-to-Hagane, 1988, 74(4): 664
|
[7] |
楊立紅, 劉瀏, 何平. 轉爐冶煉終點錳成分的預報模型. 煉鋼, 2003, 19(1): 10 doi: 10.3969/j.issn.1002-1043.2003.01.002
Yang L H, Liu L, He P. [Mn]ep prediction model for melt in oxygen converter. Steelmaking, 2003, 19(1): 10 doi: 10.3969/j.issn.1002-1043.2003.01.002
|
[8] |
劉錕, 劉瀏, 何平. 基于副槍的轉爐終點磷錳控制模型與脫磷優化. 鋼鐵, 2008, 43(7): 32 doi: 10.3321/j.issn:0449-749X.2008.07.007
Liu K, Liu L, He P. Endpoint phosphorus and manganese content control model based on sublance technique and optimization of dephosphorization process. Iron Steel, 2008, 43(7): 32 doi: 10.3321/j.issn:0449-749X.2008.07.007
|
[9] |
Wang Z, Chang J, Ju Q P, et al. Predictionmodel of end-point manganese content for BOF steelmaking process. ISIJ Int, 2012, 52(9): 1585 doi: 10.2355/isijinternational.52.1585
|
[10] |
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70(1-3): 489 doi: 10.1016/j.neucom.2005.12.126
|
[11] |
趙搶搶, 侯保林. 函數型數據分析與優化極限學習機結合的彈藥傳輸機械臂參數辨識. 工程科學學報, 2017, 39(4): 611 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704017.htm
Zhao Q Q, Hou B L. Parameter identification of a shell transfer arm using FDA and optimized ELM. Chin J Eng, 2017, 39(4): 611 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704017.htm
|
[12] |
Deng W Y, Zheng Q H, Chen L. Regularizedextreme learning machine//IEEE Symposium on Computational Intelligence & Data Mining. Nashville, 2009: 389
|
[13] |
熊文濤, 禹寶軍, 孫林. 改進粒子群算法對1420mm五機架冷連軋機軋制規程的優化. 鋼鐵研究學報, 2014, 26(11): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201411006.htm
Xiong W T, Yu B J, Sun L. Improved particle swarm optimization of rolling schedule on 420 mm 5-stand tandem cold strip mill. J Iron Steel Res, 2014, 26(11): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201411006.htm
|
[14] |
Kennedy J, Eberhart R. Particle swarm optimization//Proceedings of ICNN' 95-International Conference on Neural Networks. Perth, 1995: 1942
|
[15] |
李擎, 徐銀梅, 張德政, 等. 基于粒子群算法的移動機器人全局路徑規劃策略. 北京科技大學學報, 2010, 32(3): 397 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201003022.htm
Li Q, Xu Y M, Zhang D Z, et al. Global path planning method for mobile robots based on the particle swarm algorithm. J Univ Sci Technol Beijing, 2010, 32(3): 397 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201003022.htm
|
[16] |
陶海龍. 基于混合智能算法的鐵路運量預測研究[學位論文]. 蘭州: 蘭州交通大學, 2012
Tao H L. Study on Forecast of Railway Traffic Volume Based on Hybrid Intelligent Algorithm[Dissertation]. Lanzhou: Lanzhou Jiaotong University, 2012
|
[17] |
Bueno-Crespo A, García-Laencina P J, Sancho-Gómez J L. Neural architecture design based on extreme learning machine. Neural Networks, 2013, 48: 19 doi: 10.1016/j.neunet.2013.06.010
|
[18] |
陳恒志, 楊建平, 盧新春, 等. 基于極限學習機(ELM)的連鑄坯質量預測. 工程科學學報, 2018, 40(7): 815 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201807007.htm
Chen H Z, Yang J P, Lu X C, et al. Quality prediction of the continuous casting bloom based on the extreme learning machine. Chin J Eng, 2018, 40(7): 815 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201807007.htm
|
[19] |
Na W B, Su Z W, Ji Y F. Research ofsingle well production prediction based on improved extreme learning machine. Appl Mech Mater, 2013, 333-335: 1296 doi: 10.4028/www.scientific.net/AMM.333-335.1296
|
[20] |
Martínez-Martínez J M, Escandell-Montero P, Soria-Olivas E, et al. Regularized extreme learning machine for regression problems. Neurocomputing, 2011, 74(17): 3716 doi: 10.1016/j.neucom.2011.06.013
|
[21] |
Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks, 1989, 2(5): 359 doi: 10.1016/0893-6080(89)90020-8
|
[22] |
杜斌, 林云. 通用智能自動建模軟件開發與應用. 計算技術與自動化, 2003, 22(2): 103 doi: 10.3969/j.issn.1003-6199.2003.02.030
Du B, Lin Y. Development andapplication of an universal automatic modeling tools. Comput Technol Autom, 2003, 22(2): 103 doi: 10.3969/j.issn.1003-6199.2003.02.030
|