<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
LANG Ying-xian, LIANG Zheng-zhao, DONG Zhuo. Three-dimensional microscopic model reconstruction of basalt and numerical direct tension tests[J]. Chinese Journal of Engineering, 2019, 41(8): 997-1006. doi: 10.13374/j.issn2095-9389.2019.08.005
Citation: LANG Ying-xian, LIANG Zheng-zhao, DONG Zhuo. Three-dimensional microscopic model reconstruction of basalt and numerical direct tension tests[J]. Chinese Journal of Engineering, 2019, 41(8): 997-1006. doi: 10.13374/j.issn2095-9389.2019.08.005

Three-dimensional microscopic model reconstruction of basalt and numerical direct tension tests

doi: 10.13374/j.issn2095-9389.2019.08.005
More Information
  • Corresponding author: LIANG Zheng-zhao, E-mail: LiangZZ@dlut.edu.cn
  • Received Date: 2018-07-18
  • Publish Date: 2019-08-01
  • The presence of discontinuities and randomly distributed pores in basalt specimens greatly affects their engineering properties, such as the failure mechanism and strength. Therefore, investigating the mechanical and fracture behaviors of basalt affected by the pre-existing defects is important for underground engineering, mining engineering, foundation engineering, and rock breaking and blasting. Laboratory tests have been widely used to research the failure mechanism of rocks under different conditions. However, it is difficult to clearly show the internal or spatial crack evolution during rock failure process in laboratory tests. Recently, X-ray computerized tomography (CT) and numerical tests have been used to detect the internal microstructures of rock specimens and to study their failure mechanism and strength. In addition, tensile strength is an important mechanical property of rock material. The direct tensile test is theoretically the simplest and most effective method for understanding the tensile behavior of rock. However, it is difficult to carry out in practical condition, because the sample processing and test procedures are complicated, also the experimental process of each sample cannot be repeated and has limited results. Due to the opacity of rocks, it is difficult to examine the three-dimensional internal structures of rocks through traditional physical and numerical experiments. In the present research, a 3D numerical method was proposed for simulating porous rock failure based on CT technology, the edge detection algorithm, filtering algorithm, and 3D matrix mapping method. Direct tensile tests were carried out based on the parallel finite element method to study the effect of the porosity and pore distribution on the failure mechanism and tensile strength. The results indicate that initial cracks at the beginning of loading usually occur in pores, and then with the raising of load the initial cracks propagate along the direction perpendicular to the loading direction and eventually form macroscopic tensile cracks. The porosity and pore distribution have significant influences on the position of macroscopic tensile cracks. The acoustic emission (AE) event numbers and the accumulative AE energy are gradually decreased as the porosity increased. In addition, the brittle failure primarily determines the tensile failure mode and the presence of pores weakens the tensile strength of basalt samples.

     

  • loading
  • [1]
    陶履彬, 夏才初, 何之民. 花崗巖拉伸全過程變形特性的試驗研究. 同濟大學學報: 自然科學版, 1997, 25(1): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ199701006.htm

    Tao L B, Xia C C, He Z M. Experimental studies on the total course stress-strain curves of granite specimens under tensile condition. J Tongji Univ Nat Sci, 1997, 25(1): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ199701006.htm
    [2]
    代高飛, 夏才初, 晏成. 龍灘工程巖石試件在拉伸條件下的變形特性試驗研究. 巖石力學與工程學報, 2005, 24(3): 384 doi: 10.3321/j.issn:1000-6915.2005.03.004

    Dai G F, Xia C C, Yan C. Testing study on deformation behaviour of rock in Longtan hydropower project under tensile condition. Chin J Rock Mech Eng, 2005, 24(3): 384 doi: 10.3321/j.issn:1000-6915.2005.03.004
    [3]
    Sundaram P N, Corrales J M. Brazilian tensile strength of rocks with different elastic properties in tension and compression. Int J Rock Mech Min Sci Geomech Abstracts, 1980, 17(2): 131 doi: 10.1016/0148-9062(80)90265-X
    [4]
    張少華, 繆協興, 趙海云. 試驗方法對巖石抗拉強度測定的影響. 中國礦業大學學報, 1999, 28(3): 243 doi: 10.3321/j.issn:1000-1964.1999.03.011

    Zhang S H, Miao X X, Zhao H Y. Influence of test methods on measured results of rock tensile strength. J China Univ Min Technol, 1999, 28(3): 243 doi: 10.3321/j.issn:1000-1964.1999.03.011
    [5]
    竇慶峰, 岳順, 代高飛. 巖石直接拉伸試驗與劈裂試驗的對比研究. 地下空間, 2004, 24(2): 178 doi: 10.3969/j.issn.1673-0836.2004.02.009

    Dou Q F, Yue S, Dai G F. Comparative study on direct tensile test and splitting test. Underground Space, 2004, 24(2): 178 doi: 10.3969/j.issn.1673-0836.2004.02.009
    [6]
    張少華, 趙海云. 巖石抗拉強度試驗方法及其特征. 礦山壓力與頂板管理, 1994(3): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL403.018.htm

    Zhang S H, Zhao H Y. The test method and its characteristics of rock tensile strength. Ground Pressure Strata Control, 1994(3): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL403.018.htm
    [7]
    Nova R, Zaninetti A. An investigation into the tensile behaviour of schistose rock. Int J Rock Mech Min Sci Geomech Abstracts, 1990, 27(4): 231 http://www.sciencedirect.com/science/article/pii/0148906290905268
    [8]
    Okubo S, Fukui K. Complete stress-strain curves for various rock types in uniaxial tension. Int J Rock Mech Min Sci Geomech Abstracts, 1996, 33(6): 549 doi: 10.1016/0148-9062(96)00024-1
    [9]
    李地元, 李夕兵, Li C C. 2種巖石直接拉壓作用下的力學性能試驗研究. 巖石力學與工程學報, 2010, 29(3): 624 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003026.htm

    Li D Y, Li X B, Li C C. Experimental studies of mechanical properties of two rocks under direct compression and tensile. Chin J Rock Mech Eng, 2010, 29(3): 624 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003026.htm
    [10]
    Wong L N Y, Einstein H H. Crack coalescence in molded gypsum and Carrara marble: Part 1. Macroscopic observations and interpretation. Rock Mech Rock Eng, 2009, 42(3): 475 doi: 10.1007/s00603-008-0002-4
    [11]
    Baud P, Wong T F, Zhu W. Effects of porosity and crack density on the compressive strength of rocks. Int J Rock Mech Min Sci, 2014, 67: 202 doi: 10.1016/j.ijrmms.2013.08.031
    [12]
    Griffiths L, Heap M J, Xu T, et al. The influence of pore geometry and orientation on the strength and stiffness of porous rock. J Struct Geol, 2017, 96: 149 doi: 10.1016/j.jsg.2017.02.006
    [13]
    Bubeck A, Walker R J, Healy D, et al. Pore geometry as a control on rock strength. Earth Planet Sci Lett, 2017, 457: 38 doi: 10.1016/j.epsl.2016.09.050
    [14]
    Schaefer L N, Kendrick J E, Oommen T, et al. Geomechanical rock properties of a basaltic volcano. Front Earth Sci, 2015, 3: 29 http://adsabs.harvard.edu/abs/2015FrEaS...3...29S
    [15]
    Al-Harthi A A, Al-Amri R M, Shehata W M. The porosity and engineering properties of vesicular basalt in Saudi Arabia. Eng Geol, 1999, 54(3-4): 313 doi: 10.1016/S0013-7952(99)00050-2
    [16]
    ?anakc? H, Baykaso AgˇG2 lu A, Güllü H. Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming. Neural Comput Appl, 2009, 18(8): 1031 https://www.cnki.com.cn/Article/CJFDTOTAL-SJZY201705024.htm
    [17]
    Heap M J, Xu T, Chen C F. The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magma. Bull Volcanology, 2014, 76(9): 856 doi: 10.1007/s00445-014-0856-0
    [18]
    Yu Q L, Yang S Q, Ranjith P G, et al. Numerical modeling of jointed rock under compressive loading using X-ray computerized tomography. Rock Mech Rock Eng, 2016, 49(3): 877 doi: 10.1007/s00603-015-0800-4
    [19]
    Ju Y, Yang Y M, Song Z D, et al. A statistical model for porous structure of rocks. Sci China Ser E Technol Sci, 2008, 51(11): 2040 doi: 10.1007/s11431-008-0111-z
    [20]
    Wang Z M, Kwan A K H, Chan H C. Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh. Comput Struct, 1999, 70(5): 533 doi: 10.1016/S0045-7949(98)00177-1
    [21]
    于慶磊. 基于數字圖像的巖石類材料破裂過程分析方法研究[學位論文]. 沈陽: 東北大學, 2008

    Yu Q L. Digital Image Processing Based Numerical Methods for Failure Process Analysis of Rocklike Materials [Dissertation]. Shenyang: Northeastern University, 2008
    [22]
    趙陽升, 孟巧榮, 康天合, 等. 顯微CT試驗技術與花崗巖熱破裂特征的細觀研究. 巖石力學與工程學報, 2008, 27(1): 28 doi: 10.3321/j.issn:1000-6915.2008.01.005

    Zhao Y S, Meng Q R, Kang T H, et al. Micro-CT experimental technology and meso-investigation on thermal fracturing characteristics of granite. Chin J Rock Mech Eng, 2008, 27(1): 28 doi: 10.3321/j.issn:1000-6915.2008.01.005
    [23]
    Liang Z Z, Tang C A, Li H X, et al. Numerical simulation of 3-d failure process in heterogeneous rocks. Int J Rock Mech Min Sci, 2004, 41(Suppl 1): 323 http://www.sciencedirect.com/science/article/pii/S136516090300176X
    [24]
    Liang Z Z, Xing H, Wang S Y, et al. A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw. Comput Geotech, 2012, 45: 19 doi: 10.1016/j.compgeo.2012.04.011
    [25]
    余賢斌, 謝強, 李心一, 等. 直接拉伸、劈裂及單軸壓縮試驗下巖石的聲發射特性. 巖石力學與工程學報, 2007, 26(1): 137 doi: 10.3321/j.issn:1000-6915.2007.01.019

    Yu X B, Xie Q, Li X Y, et al. Acoustic emission of rocks under direct tensile, Brazilian and uniaxial compression. Chin J Rock Mech Eng, 2007, 26(1): 137 doi: 10.3321/j.issn:1000-6915.2007.01.019
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (923) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频