<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
ZHU Li-feng, ZHANG Bo-ping. Advances in research on high-Curie temperature BiFeO3-based ceramics[J]. Chinese Journal of Engineering, 2019, 41(8): 961-967. doi: 10.13374/j.issn2095-9389.2019.08.001
Citation: ZHU Li-feng, ZHANG Bo-ping. Advances in research on high-Curie temperature BiFeO3-based ceramics[J]. Chinese Journal of Engineering, 2019, 41(8): 961-967. doi: 10.13374/j.issn2095-9389.2019.08.001

Advances in research on high-Curie temperature BiFeO3-based ceramics

doi: 10.13374/j.issn2095-9389.2019.08.001
More Information
  • Corresponding author: ZHANG Bo-ping, E-mail: bpzhang@ustb.edu.cn
  • Received Date: 2018-06-25
  • Publish Date: 2019-08-01
  • Piezoelectric materials are functional materials that can realize electromechanical coupling characteristics and are widely used in electronic information, sensors, ultrasonic transducer, nondestructive testing, and communication technology. However, the current dominant piezoelectric ceramics are lead zirconium titanate systems. These systems contain lead, which is a toxic element, and the content of lead oxide or lead tetroxide in lead-based piezoelectric ceramics is over 60%. Because of the volatile and water-soluble characteristics of lead, the production and disposal of traditional lead-based piezoelectric ceramics will result in different levels of lead pollution, which will severely harm the environment and human health. With the improvement of environmental protection and the sustainable development of human society, the harmful effects of lead-based piezoelectric ceramics have aroused increasing attention. Countries around the world have introduced legislation to ban or restrict the use of lead-based ceramics. Thus, lead-free piezoelectric ceramics have received much attention because they are environment-friendly and pollution-free. In the last decade, countries worldwide invested a large amount of funds and labor to search and develop environment-friendly lead-free piezoelectric ceramics, which can be used to replace lead-based piezoelectric ceramics in actuators, transducers, and sensors. In recent years, BiFeO3-BaTiO3 (BF-BT) lead-free solid solutions, which are considered as one of the most promising candidates for high-temperature piezoelectric applications, have received extensive attention from researchers because of their high-Curie temperature (TC) and large spontaneous polarization (Ps), as well as high piezoelectric coefficient (d33). This paper mainly reviewed recent advances in BF-BT ceramics, including the phase structure and piezoelectric property, as well as the magnetic property. In addition, the problems that need to be solved before these ceramics can be practically applied were also analyzed according to the knowledge of the authors.

     

  • loading
  • [1]
    Takenaka T, Nagata H. Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc, 2005, 25(12): 2693 doi: 10.1016/j.jeurceramsoc.2005.03.125
    [2]
    Panda P K. Review: environmental friendly lead-free piezoelectric materials. J Mater Sci, 2009, 44(19): 5049 doi: 10.1007/s10853-009-3643-0
    [3]
    Li J F, Wang K, Zhu F Y, et al. (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc, 2013, 96(12): 3677 doi: 10.1111/jace.12715
    [4]
    Wu J G, Xiao D Q, Zhu J G. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev, 2015, 115(7): 2559 doi: 10.1021/cr5006809
    [5]
    Wei J, Fu D, Cheng J, et al. Temperature dependence of the dielectric and piezoelectric properties of xBiFeO3-(1-x)BaTiO3 ceramics near the morphotropic phase boundary. J Mater Sci, 2017, 52(18): 10726 doi: 10.1007/s10853-017-1280-6
    [6]
    Lee M H, Kim D J, Park J S, et al. High-performance lead-free piezoceramics with high Curie temperatures. Adv Mater, 2015, 27(43): 6976 doi: 10.1002/adma.201502424
    [7]
    Kumar M M, Srinivas A, Suryanarayana S V. Structure property relations in BiFeO3/BaTiO3 solid solutions. J Appl Phys, 2000, 87(2): 855 doi: 10.1063/1.371953
    [8]
    Leontsev S O, Eitel R E. Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics. J Am Ceram Soc, 2009, 92(12): 2957 doi: 10.1111/j.1551-2916.2009.03313.x
    [9]
    Wei Y X, Wang X T, Zhu J T, et al. Dielectric, ferroelectric, and piezoelectric properties of BiFeO3-BaTiO3 ceramics. J Am Ceram Soc, 2013, 96(10): 3163 doi: 10.1111/jace.12475
    [10]
    Zhu L F, Zhang B P, Zhang Z C, et al. Piezoelectric, ferroelectric and ferromagnetic properties of (1-x)BiFeO3-xBaTiO3 lead-free ceramics near morphotropic phase boundary. J Mater Sci Mater Electron, 2018, 29(3): 2307 doi: 10.1007/s10854-017-8147-0
    [11]
    Kim S, Khanal G P, Nam H W, et al. Structural and electrical characteristics of potential candidate lead-free BiFeO3-BaTiO3 piezoelectric ceramics. J Appl Phys, 2017, 122(16): 164105 doi: 10.1063/1.4999375
    [12]
    Zhao Y J, Huang R X, Liu R Z, et al. Phase structure of Li0.058(Na0.51K0.49)0.942NbO3 lead-free piezoelectric ceramics. Mater Lett, 2012, 84: 52 doi: 10.1016/j.matlet.2012.06.030
    [13]
    Rojac T, Kosec M, Budic B, et al. Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J Appl Phys, 2010, 108(7): 074107 doi: 10.1063/1.3490249
    [14]
    Li Q, Wei J X, Cheng J R, et al. High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics. J Mater Sci, 2017, 52(1): 229 doi: 10.1007/s10853-016-0325-6
    [15]
    Zhu L F, Zhang B P, Li S, et al. Large piezoelectric responses of Bi(Fe, Mg, Ti)O3-BaTiO3 lead-free piezoceramics near the morphotropic phase boundary. J Alloys Compd, 2017, 727: 382 doi: 10.1016/j.jallcom.2017.08.014
    [16]
    Chen J G, Cheng J R. Enhanced thermal stability of lead-free high temperature 0.75BiFeO3-0.25BaTiO3 ceramics with excess Bi content. J Alloys Compd, 2014, 589: 115 doi: 10.1016/j.jallcom.2013.11.169
    [17]
    Zhou C, Yang H, Zhou Q, et al. Effects of Bi excess on the structure and electrical properties of high-temperature BiFeO3-BaTiO3 piezoelectric ceramics. J Mater Sci: Mater Electron, 2013, 24(5): 1685 doi: 10.1007/s10854-012-0996-y
    [18]
    Huang S G, Li Q N, Yang L, et al. Enhanced piezoelectric properties by reducing leakage current in Co modified 0.7BiFeO3-0.3BaTiO3 ceramics. Ceram Int, 2018, 44(8): 8955 doi: 10.1016/j.ceramint.2018.02.095
    [19]
    Yang H B, Zhou C R, Liu X Y, et al. Piezoelectric properties and temperature stabilities of Mn-and Cu-modified BiFeO3-BaTiO3 high temperature ceramics. J Eur Ceram Soc, 2013, 33(6): 1177 doi: 10.1016/j.jeurceramsoc.2012.11.019
    [20]
    Zhou C R, Yang H B, Zhou Q, et al. Dielectric, ferroelectric and piezoelectric properties of La-substituted BiFeO3-BaTiO3 ceramics. Ceram Int, 2013, 39(4): 4307 doi: 10.1016/j.ceramint.2012.11.012
    [21]
    Guo Y Q, Wang T, He L H, et al. Enhanced ferroelectric and ferromagnetic properties of Er-modified BiFeO3-BaTiO3 lead-free multiferroic ceramics. J Mater Sci Mater Electron, 2016, 27(6): 5741 doi: 10.1007/s10854-016-4487-4
    [22]
    Wang J, Zhou C R, Li Q N, et al. Simultaneously enhanced piezoelectric properties and depolarization temperature in calcium doped BiFeO3-BaTiO3 ceramics. J Alloys Compd, 2018, 748: 758 doi: 10.1016/j.jallcom.2018.03.174
    [23]
    Zhou C R, Cen Z Y, Yang H B, et al. Structure, electrical properties of Bi(Fe, Co)O3-BaTiO3 piezoelectric ceramics with improved Curie temperature. Physica B, 2013, 410: 13 doi: 10.1016/j.physb.2012.11.003
    [24]
    Zheng T, Jiang Z G, Wu J G. Enhanced piezoelectricity in (1-x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region. Dalton Trans, 2016, 45: 11277 doi: 10.1039/C6DT01805J
    [25]
    Zhu L F, Zhang B P, Li S, et al. Enhanced piezoelectric properties of Bi(Mg1/2Ti1/2)O3 modified BiFeO3-BaTiO3 ceramics near the morphotropic phase boundary. J Alloys Compd, 2016, 664: 602 doi: 10.1016/j.jallcom.2016.01.003
    [26]
    Zhou C R, Feteira A, Shan X, et al. Remarkably high-temperature stable piezoelectric properties of Bi(Mg0.5Ti0.5)O3 modified BiFeO3-BaTiO3 ceramics. Appl Phys Lett, 2012, 101(3): 032901 doi: 10.1063/1.4736724
    [27]
    Zhou Q, Zhou C R, Yang H B, et al. Dielectric, ferroelectric, and piezoelectric properties of Bi(Ni1/2Ti1/2)O3-modified BiFeO3-BaTiO3 ceramics with high Curie temperature. J Am Ceram Soc, 2012, 95(12): 3889 doi: 10.1111/j.1551-2916.2012.05387.x
    [28]
    Shan X, Zhou C R, Cen Z Y, et al. Bi(Zn1/2Ti1/2)O3 modified BiFeO3-BaTiO3 lead-free piezoelectric ceramics with high temperature stability. Ceram Int, 2013, 39(6): 6707 doi: 10.1016/j.ceramint.2013.01.110
    [29]
    Zheng Q J, Guo Y Q, Lei F Y, et al. Microstructure, ferroelectric, piezoelectric and ferromagnetic properties of BiFeO3-BaTiO3-Bi(Zn0.5Ti0.5)O3 lead-free multiferroic ceramics. J Mater Sci Mater Electron, 2014, 25(6): 2638 doi: 10.1007/s10854-014-1923-1
    [30]
    Chen J Y, Zhang B P, Zhu L F, et al. Enhanced insulation resistance and electrical properties of BiFe1-x(Zn0.5Ti0.5)xO3-BaTiO3 lead-free piezoceramics. Ceram Int, 2018, 44(7): 8409 doi: 10.1016/j.ceramint.2018.02.034
    [31]
    Zhu L F, Zhang B P, Duan J Q, et al. Enhanced piezoelectric and ferroelectric properties of BiFeO3-BaTiO3 lead-free ceramics by optimizing the sintering temperature and dwell time. J Eur Ceram Soc, 2018, 38(10): 3463 doi: 10.1016/j.jeurceramsoc.2018.03.044
    [32]
    Qin Y F, Yang J, Xiong P, et al. The effects of quenching on electrical properties, and leakage behaviors of 0.67BiFeO3-0.33BaTiO3 solid solutions. J Mater Sci Mater Electron, 2018, 29(9): 7311 doi: 10.1007/s10854-018-8720-1
    [33]
    Sosnowska I, Zvezdin A K. Origin of the long period magnetic ordering in BiFeO3. J Magn Magn Mater, 1995, 140-144: 167 doi: 10.1016/0304-8853(94)01120-6
    [34]
    Gippius A A, Khozeev D F, Morozova E N, et al. Observation of spin modulated magnetic structure at Bi-and Fe-sites in BiFeO3 by nuclear magnetic resonance. Phys Status Solidi A, 2003, 196(1): 221 doi: 10.1002/pssa.200306391
    [35]
    Zhu L F, Zhang B P, Zhang Z C, et al. Piezoelectric, ferroelectric and ferromagnetic properties of (1-x)BiFeO3-xBaTiO3 lead-free ceramics near morphotropic phase boundary. J Mater Sci Mater Electron, 2018, 29(3): 2307 doi: 10.1007/s10854-017-8147-0
    [36]
    Dai Z H, Liu L, Ying G B, et al. Structural, dielectric and magnetic properties of Mn modified xBiFeO3-(1-x)BaTiO3 ceramics. J Magn Magn Mater, 2017, 434: 10 doi: 10.1016/j.jmmm.2016.10.131
    [37]
    Liu X H, Xu Z, Qu S B, et al. Ferroelectric and ferromagnetic properties of Mn-doped 0.7BiFeO3-0.3BaTiO3 solid solution. Ceram Int, 2008, 34(4): 797 doi: 10.1016/j.ceramint.2007.09.029
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)

    Article views (1234) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频