<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
YANG Yong, WANG Xin-hua, CHEN Ying-chun, WEI Kai-ling. Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference[J]. Chinese Journal of Engineering, 2020, 42(7): 894-901. doi: 10.13374/j.issn2095-9389.2019.07.21.002
Citation: YANG Yong, WANG Xin-hua, CHEN Ying-chun, WEI Kai-ling. Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference[J]. Chinese Journal of Engineering, 2020, 42(7): 894-901. doi: 10.13374/j.issn2095-9389.2019.07.21.002

Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference

doi: 10.13374/j.issn2095-9389.2019.07.21.002
More Information
  • Corresponding author: E-mail: wxhemma2005@163.com
  • Received Date: 2019-07-21
  • Publish Date: 2020-07-01
  • In recent years, many accidents caused by alternating current (AC) corrosion have been reported. AC corrosion has become a serious potential damage to buried steel pipelines. The X100 pipeline steel is a very promising material for long-distance gas pipelines, and Korla soil is a typical saline-alkali soil of West China. The coarse-grained heat-affected zone (CGHAZ) and the intercritically reheated coarse-grained heat-affected zone (ICCGHAZ) were simulated by a Gleeble thermomechanical processing machine through different thermal cycle times, peak temperatures, and cooling rates. Electrochemical corrosion measurements, immersion experiments and surface analysis techniques were used to characterize the corrosion behavior of the base metal, CGHAZ, and ICCGHAZ of the X100 pipeline steel in simulated Korla soil solution under AC interference. The X100 pipeline steel base metal, CGHAZ, and ICCGHAZ exhibited active dissolution in the simulated Korla soil solution under AC interference, and the average corrosion rate increased with the increase in AC density. The amplitude of the polarization potential oscillation caused by AC interference and the microstructure had an important influence on the corrosion rate and corrosion morphology of the X100 pipeline steel base metal, CGHAZ and ICCGHAZ. Under the interference of 5 mA·cm?2 AC density, the X100 pipeline steel base material shows the most negative corrosion potential and the largest average corrosion rate, while the ICCGHAZ shows the most positive corrosion potential and the smallest average corrosion rate. Under the interferences of 20 and 50 mA·cm?2 AC densities, the ICCGHAZ of X100 pipeline steel shows the most negative corrosion potential and the largest average corrosion rate, while the base metal shows the most positive corrosion potential and the smallest average corrosion rate. Under the interference of 20 mA·cm?2 AC density, the X100 pipeline steel is locally corroded. CGHAZ and ICCGHAZ have obvious grain boundary corrosion, whereby GCHAZ grain boundary corrosion morphology is slit-shaped, and ICCGHAZ grain boundary corrosion morphology is continuous pores.

     

  • loading
  • [1]
    杜偉, 李鶴林, 王海濤, 等. 國內外高性能油氣輸送管的研發現狀. 油氣儲運, 2016, 35(6):577

    Du W, Li H L, Wang H T, et al. Research status of high-performance oil and gas pipelines in China and abroad. Oil Gas Storage Transp, 2016, 35(6): 577
    [2]
    Witek M. Possibilities of using X80, X100, X120 high-strength steels for onshore gas transmission pipelines. J Nat Gas Sci Eng, 2015, 27: 374 doi: 10.1016/j.jngse.2015.08.074
    [3]
    Maes M A, Dann M, Salama M M. Influence of grade on the reliability of corroding pipelines. Reliab Eng Syst Saf, 2008, 93(3): 447 doi: 10.1016/j.ress.2006.12.009
    [4]
    劉成虎, 柳偉, 路民旭. X60鋼及其焊接熱影響區的腐蝕行為對比研究. 中國腐蝕與防護技術, 2008, 20(3):206

    Liu C H, Liu W, Lu M X. Comparative study on corrosion behavior of X60 steel and its welding heat-affected zone. Corros Sci Prot Technol, 2008, 20(3): 206
    [5]
    范舟, 劉建儀, 李士倫, 等. X70管線鋼焊接接頭組織及其海水腐蝕規律. 西南石油大學學報: 自然科學版, 2009, 31(5):171

    Fan Z, Liu J Y, Li S L, et al. Microstructure and seawater corrosion to welding joint of X70 pipeline steel. J Southwest Petrol Univ Sci Technol Ed, 2009, 31(5): 171
    [6]
    Mohammadi F, Eliyan F F, Alfantazi A. Corrosion of simulated weld HAZ of API X-80 pipeline steel. Corros Sci, 2012, 63: 323 doi: 10.1016/j.corsci.2012.06.014
    [7]
    Zhao W, Zou Y, Zou Z D, et al. The corrosion characterization in simulated heat-affected zones of X80 pipeline steel in near-neutral solution. Int J Electrochem Sci, 2015, 10(11): 9725
    [8]
    Shi C W, Zhang Y B, Liu P, et al. Effects of second thermal cycles on microstructure and CO2 corrosion behavior of X80 pipeline steel. Int J Electrochem Sci, 2018, 13(3): 2412
    [9]
    張敏, 李樂, 程康康, 等. X100管線鋼焊接接頭在酸性環境中的腐蝕行為分析. 兵器材料科學與工程, 2018, 41(6):1

    Zhang M, Li L, Cheng K K, et al. Corrosion behavior of X100 pipeline steel welded joint in acidic environment. Ordnance Mater Sci Eng, 2018, 41(6): 1
    [10]
    Eliyan F F, Alfantazi A. Corrosion of the heat-affected zones (HAZs) of API-X100 pipeline steel in dilute bicarbonate solutions at 90 ℃–an electrochemical evaluation. Corros Sci, 2013, 74: 297 doi: 10.1016/j.corsci.2013.05.003
    [11]
    Eliyan F F, Icre F, Alfantazi A. Passivation of HAZs of API‐X100 pipeline steel in bicarbonate‐carbonate solutions at 298 K. Mater Corros, 2014, 65(12): 1162 doi: 10.1002/maco.201206985
    [12]
    Papadakis G A. Major hazard pipelines: a comparative study of onshore transmission accidents. J Loss Prev Process Ind, 1999, 12(1): 91 doi: 10.1016/S0950-4230(98)00048-5
    [13]
    Mustapha A, Charles E A, Hardie D. Evaluation of environment-assisted cracking susceptibility of a grade X100 pipeline steel. Corros Sci, 2012, 54: 5 doi: 10.1016/j.corsci.2011.08.030
    [14]
    Kulman F E. Effects of alternating currents in causing corrosion. Corrosion, 1961, 17(3): 34 doi: 10.5006/0010-9312-17.3.34
    [15]
    Gummow R A, Wakelin R G, Segall S M. AC corrosion― ―a new threat to pipeline integrity? // 1996 1st International Pipeline Conference. Calgary, 1996: 443
    [16]
    符耀慶, 王秀通, 陳勝利. 南朗段埋地天然氣管道雜散電流檢測與治理. 表面技術, 2016, 45(2):22

    Fu Y Q, Wang X T, Chen S L. Stray current detection and treatment for buried natural gas pipeline of Nanlang segment. Surf Technol, 2016, 45(2): 22
    [17]
    Hanson H R, Smart J. AC corrosion on a pipeline located in an HVAC utility corridor // Corrosion 2004. New Orleans, 2004: NACE-04209
    [18]
    梁平, 杜翠薇, 李曉剛. 庫爾勒土壤模擬溶液的模擬性和加速性研究. 中國腐蝕與防護學報, 2011, 31(2):97

    Liang P, Du C W, Li X G. Simulating and accelerating properties of Kuerle soil simulated solution. J Chin Soc Corros Prot, 2011, 31(2): 97
    [19]
    Goidanich S, Lazzari L, Ormellese M. AC corrosion. Part 2: parameters influencing corrosion rate. Corros Sci, 2010, 52(3): 916 doi: 10.1016/j.corsci.2009.11.012
    [20]
    Lazzari L, Goidanich S, Ormellese M, et al. Influence of AC on corrosion kinetics for carbon steel, zinc and copper // CORROSION 2005. Houston, Texas, 2005: NACE-05189
    [21]
    王曉霖, 閆茂成, 舒韻, 等. 破損涂層下管線鋼的交流電干擾腐蝕行為. 中國腐蝕與防護學報, 2017, 37(4):341 doi: 10.11902/1005.4537.2017.118

    Wang X L, Yan M C, Shu Y, et al. AC interference corrosion of pipeline steel beneath delaminated coating with holiday. J Chin Soc Corros Prot, 2017, 37(4): 341 doi: 10.11902/1005.4537.2017.118
    [22]
    Wang X H, Song X T, Chen Y C, et al. Corrosion behavior of X70 and X80 pipeline steels in simulated soil solution. Int J Electrochem Sci, 2018, 13(7): 6436
    [23]
    Wang X H, Tang X H, Wang L W, et al. Synergistic effect of stray current and stress on corrosion of API X65 steel. J Nat Gas Sci Eng, 2014, 21: 474 doi: 10.1016/j.jngse.2014.09.007
    [24]
    王新華, 楊國勇, 黃海, 等. 埋地鋼質管道交流雜散電流腐蝕規律研究. 中國腐蝕與防護學報, 2013, 33(4):293

    Wang X H, Yang G Y, Huang H, et al. AC stray current corrosion law of buried steel pipeline. J Chin Soc Corros Prot, 2013, 33(4): 293
    [25]
    萬紅霞, 宋東東, 劉智勇, 等. 交流電對X80鋼在近中性環境中腐蝕行為的影響. 金屬學報, 2017, 53(5):575 doi: 10.11900/0412.1961.2016.00500

    Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment. Acta Metall Sin, 2017, 53(5): 575 doi: 10.11900/0412.1961.2016.00500
    [26]
    朱敏, 杜翠薇, 李曉剛, 等. 交流電頻率對X80管線鋼在酸性土壤模擬溶液中腐蝕行為的影響. 中國腐蝕與防護學報, 2014, 34(3):225 doi: 10.11902/1005.4537.2013.127

    Zhu M, Du C W, Li X G, et al. Effects of alternating current (AC) frequency on corrosion behavior of X80 pipeline steel in a simulated acid soil solution. J Chin Soc Corros Prot, 2014, 34(3): 225 doi: 10.11902/1005.4537.2013.127
    [27]
    李學達, 李霞, 王世新, 等. 第二道次焊接熱循環冷卻速度對X100管線鋼臨界再熱粗晶區組織及沖擊性能的影響. 金屬熱處理, 2017, 42(9):66

    Li X D, Li X, Wang S X, et al. Influence of cooling rate on microstructure and impact properties of ICCGHAZ of X100 pipeline steel during the second pass thermal cycle. Heat Treat Met, 2017, 42(9): 66
    [28]
    Lalvani S B, Lin X. A revised model for predicting corrosion of materials induced by alternating voltages. Corros Sci, 1996, 38(10): 1709 doi: 10.1016/S0010-938X(96)00065-0
    [29]
    Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions. Corros Sci, 2014, 85: 304 doi: 10.1016/j.corsci.2014.04.030
    [30]
    Li M C, Cheng Y F. Mechanistic investigation of hydrogen-enhanced anodic dissolution of X-70 pipe steel and its implication on near-neutral pH SCC of pipelines. Electrochim Acta, 2007, 52(28): 8111 doi: 10.1016/j.electacta.2007.07.015
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)

    Article views (1202) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频