<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
PAN Ming, YU Hui-xiang, JI Chen-xi, LIU Yan-qiang, JI Yun-qing. Effect of oxygen blowing during RH treatment on the cleanliness of IF steel[J]. Chinese Journal of Engineering, 2020, 42(7): 846-853. doi: 10.13374/j.issn2095-9389.2019.07.19.002
Citation: PAN Ming, YU Hui-xiang, JI Chen-xi, LIU Yan-qiang, JI Yun-qing. Effect of oxygen blowing during RH treatment on the cleanliness of IF steel[J]. Chinese Journal of Engineering, 2020, 42(7): 846-853. doi: 10.13374/j.issn2095-9389.2019.07.19.002

Effect of oxygen blowing during RH treatment on the cleanliness of IF steel

doi: 10.13374/j.issn2095-9389.2019.07.19.002
More Information
  • Interstitial-free (IF) steel is widely used in the automobile industry, home appliance industry, etc. Not only very low content of carbon and nitrogen, but also high quality surface of the final product are required for this steel grade. The contents of oxygen and inclusions in the steel have a great influence on the surface quality of the final product. Therefore, it is very important to decrease the carbon content effectively and keep high steel cleanliness at the same time in industrial production. In present work, the effect of oxygen blowing on the cleanliness of IF steel under the forced decarburization by oxygen blowing in the Ruhrstahl Hereaeus (RH) refining process was studied through dense sampling during RH and continuous casting process, and inclusion analysis was carried out with automatic scanning electron microscopy (ASPEX). Oxygen blowing was found to have little effect on the inclusions’ types and morphology throughout the process. The oxygen blowing rate had a great influence on the cleanliness of the molten steel in the early stage of RH refining (within 4 min after adding Al). An increase in the oxygen blowing rate led to an increase in the content of total oxygen (T.O) and the amount of inclusions in the steel, but it had little effect on the steel cleanliness in the subsequent process. Cluster inclusions were mainly found before the vacuum was broken, and finding them in steel after RH refining was difficult. The steel cleanliness in a tundish had little correlation with the oxygen blowing rate during RH treatment, but had a great correlation with the oxygen content in the molten steel before Al deoxidation. The higher the oxygen content before Al deoxidation, the worse the steel cleanliness in the tundish. To improve the cleanliness in the tundish, the oxygen content in molten steel before Al addition should be decreased as much as possible. The T.O and the inclusions amount in the steel showed a downward trend as the production proceeded, which indicates that the steel cleanliness was gradually improved.

     

  • loading
  • [1]
    王新華. 高品質冷軋薄板鋼中非金屬夾雜物控制技術. 鋼鐵, 2013, 48(9):1

    Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1
    [2]
    Matsuura H, Wang C, Wen G H, et al. The transient stages of inclusion evolution during Al and/or Ti additions to molten iron. ISIJ Int, 2007, 47(9): 1265 doi: 10.2355/isijinternational.47.1265
    [3]
    Basu S, Choudhary S K, Girase N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel. ISIJ Int, 2004, 44(10): 1653 doi: 10.2355/isijinternational.44.1653
    [4]
    王敏, 包燕平, 楊荃. 鈦合金化過程對鋼液潔凈度的影響. 北京科技大學學報, 2013, 35(6):725

    Wang M, Bao Y P, Yang Q. Effect of ferro-titanium alloying process on steel cleanness. J Univ Sci Technol Beijing, 2013, 35(6): 725
    [5]
    Qin Y M, Wang X H, Li L P, et al. Effect of oxidizing slag on cleanliness of IF steel during ladle holding process. Steel Res Int, 2015, 86(9): 1037 doi: 10.1002/srin.201400349
    [6]
    崔衡, 陳斌, 王敏, 等. RH精煉過程中IF鋼潔凈度控制. 北京科技大學學報, 2011, 33(增刊1): 147

    Cui H, Chen B, Wang M, et al. Cleanliness control of IF steel during the RH refining process. J Univ Sci Technol Beijing, 2011, 33(Suppl1): 147
    [7]
    王敏, 包燕平, 崔衡, 等. RH純循環對Ti-IF鋼潔凈度的影響. 北京科技大學學報, 2011, 33(12):1448

    Wang M, Bao Y P, Cui H, et al. Effect of RH pure circulation on the cleanness of titanium stabilized interstitial-free (Ti-IF) steel. J Univ Sci Technol Beijing, 2011, 33(12): 1448
    [8]
    袁方明, 王新華, 李宏, 等. 不同澆鑄階段IF鋼連鑄板坯潔凈度. 北京科技大學學報, 2005, 27(4):436 doi: 10.3321/j.issn:1001-053X.2005.04.012

    Yuan F M, Wang X H, Li H, et al. Cleanliness of interstitial-free steel slabs produced in different casting stages. J Univ Sci Technol Beijing, 2005, 27(4): 436 doi: 10.3321/j.issn:1001-053X.2005.04.012
    [9]
    崔衡, 岳峰, 包燕平, 等. IF鋼連鑄頭坯潔凈度研究. 鋼鐵, 2010, 45(3):38

    Cui H, Yue F, Bao Y P, et al. Study on cleanliness of IF steel first slab. Iron Steel, 2010, 45(3): 38
    [10]
    鄧小旋, 王新華, 李林平, 等. 交換鋼包過程對IF鋼連鑄板坯表層潔凈度的影響. 北京科技大學學報, 2014, 36(7):880

    Deng X X, Wang X H, Li L P, et al. Effect of ladle change process on the surface cleanliness of IF steel continuous casting slabs. J Univ Sci Technol Beijing, 2014, 36(7): 880
    [11]
    Zhang Q Y, Wang L T, Wang X H. Influence of casting speed variation during unsteady continuous casting on non-metallic inclusions in IF steel slabs. ISIJ Int, 2006, 46(10): 1421 doi: 10.2355/isijinternational.46.1421
    [12]
    Kumar A, Choudhary S K, Ajmani S K. Distribution of macroinclusions across slab thickness. ISIJ Int, 2012, 52(12): 2305 doi: 10.2355/isijinternational.52.2305
    [13]
    劉瀏. RH真空精煉工藝與裝備技術的發展. 鋼鐵, 2006, 41(8):1 doi: 10.3321/j.issn:0449-749X.2006.08.001

    Liu L. Development of process and equipment of RH vacuum refinery technology. Iron Steel, 2006, 41(8): 1 doi: 10.3321/j.issn:0449-749X.2006.08.001
    [14]
    Han C J, Ai L Q, Liu B S, et al. Decarburization mechanism of RH-MFB refining process. J Univ Sci Technol Beijing, 2006, 13(3): 218 doi: 10.1016/S1005-8850(06)60046-7
    [15]
    Yamaguchi K, Kishimoto Y, Sakuraya T, et al. Effect of refining conditions for ultra low carbon steel on decarburization reaction in RH degasser. ISIJ Int, 1992, 32(1): 126 doi: 10.2355/isijinternational.32.126
    [16]
    Takahashi M, Matsumoto H, Saito T. Mechanism of decarburization in RH degasser. ISIJ Int, 1995, 35(12): 1452 doi: 10.2355/isijinternational.35.1452
    [17]
    李崇巍, 成國光, 王新華, 等. RH冶煉超低碳鋼內部脫碳機理及控制工藝. 北京科技大學學報, 2011, 33(3):276

    Li C W, Cheng G G, Wang X H, et al. Internal decarburization mechanism and control technology of RH treatment for ultra-low carbon steel. J Univ Sci Technol Beijing, 2011, 33(3): 276
    [18]
    Park Y G, Yi K W. A new numerical model for predicting carbon concentration during RH degassing treatment. ISIJ Int, 2003, 43(9): 1403 doi: 10.2355/isijinternational.43.1403
    [19]
    Inoue S, Furuno Y, Usui T, et al. Acceleration of decarburization in RH vacuum degassing process. ISIJ Int, 1992, 32(1): 120 doi: 10.2355/isijinternational.32.120
    [20]
    Harashima K, Mizoguchi S, Matsuo M, et al. Rates of nitrogen and carbon removal from liquid iron in low content region under reduced pressures. ISIJ Int, 1992, 32(1): 111 doi: 10.2355/isijinternational.32.111
    [21]
    Liu B S, Zhu G S, Li H X, et al. Decarburization rate of RH refining for ultra low carbon steel. Int J Miner Metall Mater, 2010, 17(1): 22 doi: 10.1007/s12613-010-0104-3
    [22]
    Doo W C, Kim D Y, Kang S C, et al. The morphology of Al?Ti?O complex oxide inclusions formed in an ultra low-carbon steel melt during the RH process. Met Mater Int, 2007, 13(3): 249 doi: 10.1007/BF03027813
    [23]
    Hasunuma J, Kurose Y, Hiwasa S, et al. Production of ultra-low carbon steel by K-BOP process at Kawasaki Steel // Steelmaking Conference Proceedings. Detroit, 1990: 91
    [24]
    Wang M, Bao Y P, Cui H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process. ISIJ Int, 2010, 50(11): 1606 doi: 10.2355/isijinternational.50.1606
    [25]
    張先棹. 冶金傳輸原理. 北京: 冶金工業出版社, 1988

    Zhang X Z. Principles of Transport Phenomena in Metallurgy. Beijing: Metallurgical Industry Press, 1988
    [26]
    Zhong L C, Zeze M, Mukai K. Density of liquid IF steel containing Ti. ISIJ Int, 2005, 45(3): 312 doi: 10.2355/isijinternational.45.312
    [27]
    Wakoh M, Sano N. Behavior of alumina inclusions just after deoxidation. ISIJ Int, 2007, 47(5): 627 doi: 10.2355/isijinternational.47.627
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article views (1404) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频