Citation: | WANG Jing-jing, XU Xiao-liang, LIANG Kai-yan, WANG Ge. Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: a review[J]. Chinese Journal of Engineering, 2020, 42(1): 26-38. doi: 10.13374/j.issn2095-9389.2019.07.19.001 |
[1] |
鐘麗敏, 楊穆, 欒奕, 等. 石蠟/二氧化硅復合相變材料的制備及其性能. 工程科學學報, 2015, 37(7):936
Zhong L M, Yang M, Luan Y, et al. Preparation and properties of paraffin/SiO2 composite phase change material. Chin J Eng, 2015, 37(7): 936
|
[2] |
Li W Q, Hou R F, Wan H, et al. A new strategy for enhanced latent heat energy storage with microencapsulated phase change material saturated in metal foam. Sol Energy Mater Sol Cells, 2017, 171: 197 doi: 10.1016/j.solmat.2017.06.037
|
[3] |
Atinafu D G, Dong W J, Huang X B, et al. One-pot synthesis of light-driven polymeric composite phase change materials based on N-doped porous carbon for enhanced latent heat storage capacity and thermal conductivity. Sol Energy Mater Sol Cells, 2018, 179: 392 doi: 10.1016/j.solmat.2018.01.035
|
[4] |
Ji H X, Sellan D P, Pettes M T, et al. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ Sci, 2014, 7(3): 1185 doi: 10.1039/C3EE42573H
|
[5] |
Kenisarin M, Mahkamov K. Passive thermal control in residential buildings using phase change materials. Renewable Sustainable Energy Rev, 2016, 55: 371 doi: 10.1016/j.rser.2015.10.128
|
[6] |
Mondal S. Phase change materials for smart textiles-an overview. Appl Therm Eng, 2008, 28(11-12): 1536 doi: 10.1016/j.applthermaleng.2007.08.009
|
[7] |
Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications. Renewable Sustainable Energy Rev, 2009, 13(2): 318 doi: 10.1016/j.rser.2007.10.005
|
[8] |
Ibrahim N I, Al-Sulaiman F A, Rahman S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renewable Sustainable Energy Rev, 2017, 74: 26 doi: 10.1016/j.rser.2017.01.169
|
[9] |
Fleming E, Wen S Y, Shi L, et al. Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit. Int J Heat Mass Transfer, 2015, 82: 273 doi: 10.1016/j.ijheatmasstransfer.2014.11.022
|
[10] |
Zhang P, Meng Z N, Zhu H, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Appl Energy, 2017, 185: 1971 doi: 10.1016/j.apenergy.2015.10.075
|
[11] |
祁先進, 王華, 王勝林, 等. 金屬基與熔融鹽復合蓄熱材料的制備與性能研究. 工業加熱, 2005, 34(1):8 doi: 10.3969/j.issn.1002-1639.2005.01.003
Qi X J, Wang H, Wang S L, et al. Preparation and research of composite heat storage material with metal Ni and molten salts. Ind Heat, 2005, 34(1): 8 doi: 10.3969/j.issn.1002-1639.2005.01.003
|
[12] |
盛強, 邢玉明, 王澤. 泡沫金屬復合相變材料的制備與性能分析. 化工學報, 2013, 64(10):3565
Sheng Q, Xing Y M, Wang Z. Preparation and performance analysis of metal foam composite phase change material. CIESC J, 2013, 64(10): 3565
|
[13] |
Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy, 2013, 112: 1357 doi: 10.1016/j.apenergy.2013.04.050
|
[14] |
張正國, 王學澤, 方曉明. 石蠟/膨脹石墨復合相變材料的結構與熱性能. 華南理工大學學報: 自然科學版, 2006, 34(3):1
Zhang Z G, Wang X Z, Fang X M. Structure and thermal properties of composite paraffin/expanded graphite phase change material. J South China Univ Technol Nat Sci Ed, 2006, 34(3): 1
|
[15] |
Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng, 2007, 27(8-9): 1271 doi: 10.1016/j.applthermaleng.2006.11.004
|
[16] |
Zhong Y J, Li S Z, Wei X H, et al. Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage. Carbon, 2010, 48(1): 300 doi: 10.1016/j.carbon.2009.09.033
|
[17] |
Zhang Z G, Zhang N, Peng J, et al. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy, 2012, 91(1): 426 doi: 10.1016/j.apenergy.2011.10.014
|
[18] |
Yang X J, Yuan Y P, Zhang N, et al. Preparation and properties of myristic?palmitic?stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy, 2014, 99: 259 doi: 10.1016/j.solener.2013.11.021
|
[19] |
鄒得球, 馬先鋒, 劉小詩, 等. 石墨烯在相變材料中的研究進展. 化工進展, 2017, 36(5):1743
Zou D Q, Ma X F, Liu X S, et al. Research progress on graphene in phase change materials. Chem Ind Eng Prog, 2017, 36(5): 1743
|
[20] |
Mehrali M, Latibari S T, Mehrali M, et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers Manage, 2013, 67: 275 doi: 10.1016/j.enconman.2012.11.023
|
[21] |
Akhiani A R, Mehrali M, Latibari S T, et al. One-step preparation of form-stable phase change material through self-assembly of fatty acid and graphene. J Phys Chem C, 2015, 119(40): 22787 doi: 10.1021/acs.jpcc.5b06089
|
[22] |
Wang C Y, Feng L L, Yang H Z, et al. Graphene oxide stabilized polyethylene glycol for heat storage. Phys Chem Chem Phys, 2012, 14(38): 13233 doi: 10.1039/c2cp41988b
|
[23] |
Wang C Y, Wang W, Li G L, et al. The influence of interactions between polyethylene glycol and graphene oxide in shape-stabilized PCMs on their phase change behaviors. Adv Mater Res, 2013, 800: 459 doi: 10.4028/www.scientific.net/AMR.800.459
|
[24] |
王崇云, 李國玲, 王維, 等. 載體材料表面性質對定形相變材料相變行為的影響. 沈陽工業大學學報, 2014, 36(1):39 doi: 10.7688/j.issn.1000-1646.2014.01.08
Wang C Y, Li G L, Wang W, et al. Influence of surface performance of supporting materials on phase change behavior of shape-stabilized phase change materials. J Shenyang Univ Technol, 2014, 36(1): 39 doi: 10.7688/j.issn.1000-1646.2014.01.08
|
[25] |
Ye S B, Zhang Q L, Hu D D, et al. Core-shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage. J Mater Chem A, 2015, 3(7): 4018 doi: 10.1039/C4TA05448B
|
[26] |
Zhang L B, Li R Y, Tang B, et al. Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale, 2016, 8(30): 14600 doi: 10.1039/C6NR03921A
|
[27] |
Meng X, Zhang H Z, Sun L X, et al. Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials. J Therm Anal Calorim, 2013, 111(1): 377 doi: 10.1007/s10973-012-2349-8
|
[28] |
Chen L J, Zou R Q, Xia W, et al. Electro-and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges. ACS Nano, 2012, 6(12): 10884 doi: 10.1021/nn304310n
|
[29] |
Feng L L, Zhao W, Zheng J, et al. The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and MCM-41). Sol Energy Mater Sol Cells, 2011, 95(12): 3550 doi: 10.1016/j.solmat.2011.08.020
|
[30] |
Khadiran T, Hussein M Z, Zainal Z, et al. Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material. Energy, 2015, 82: 468 doi: 10.1016/j.energy.2015.01.057
|
[31] |
Luan Y, Yang M, Ma Q Q, et al. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties. J Mater Chem A, 2016, 4: 7641 doi: 10.1039/C6TA01676F
|
[32] |
Tang J, Yang M, Dong W J, et al. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity. RSC Adv, 2016, 6(46): 40106 doi: 10.1039/C6RA04059D
|
[33] |
Atinafu D G, Dong W J, Hou C M, et al. A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials. Mater Today Energy, 2019, 12: 239 doi: 10.1016/j.mtener.2019.01.011
|
[34] |
Chen X, Gao H Y, Yang M, et al. Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting. Nano Energy, 2018, 49: 86 doi: 10.1016/j.nanoen.2018.03.075
|
[35] |
Wang J W, Jia X L, Atinafu D G, et al. Synthesis of “graphene-like” mesoporous carbons for shape-stabilized phase change materials with high loading capacity and improved latent heat. J Mater Chem A, 2017, 5(46): 24321 doi: 10.1039/C7TA05594C
|
[36] |
Atinafu D G, Dong W J, Wang C, et al. Synthesis of porous carbon from cotton using an Mg(OH)2 template for form-stabilized phase change materials with high encapsulation capacity, transition enthalpy and reliability. J Mater Chem A, 2018, 6(19): 8969 doi: 10.1039/C8TA01672K
|
[37] |
Bi H, Huang H N, Xu F, et al. Carbon microtube/graphene hybrid structures for thermal management applications. J Mater Chem A, 2015, 3(36): 18706 doi: 10.1039/C5TA05115K
|
[38] |
Kholmanov I, Kim J, Ou E, et al. Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano, 2015, 9(12): 11699 doi: 10.1021/acsnano.5b02917
|
[39] |
Yin Z Y, Huang Z H, Wen R L, et al. Preparation and thermal properties of phase change materials based on paraffin with expanded graphite and carbon foams prepared from sucroses. RSC Adv, 2016, 6(97): 95085 doi: 10.1039/C6RA13758J
|
[40] |
Yang J, Qi G Q, Liu Y, et al. Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape stabilization and light to thermal energy storage. Carbon, 2016, 100: 693 doi: 10.1016/j.carbon.2016.01.063
|
[41] |
Li A, Dong C, Dong W J, et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance. ACS Appl Mater Interfaces, 2018, 10(38): 32093 doi: 10.1021/acsami.8b09541
|
[42] |
Zhang L, Zhou K C, Wei Q P, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage. Appl Energy, 2019, 233-234: 208 doi: 10.1016/j.apenergy.2018.10.036
|
[43] |
Tang B T, Qiu M G, Zhang S F. Thermal conductivity enhancement of PEG/SiO2 composite PCM byin situ Cu doping. Sol Energy Mater Sol Cells, 2012, 105: 242 doi: 10.1016/j.solmat.2012.06.012
|
[44] |
Qian T T, Li J H, Min X, et al. Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage. J Mater Chem A, 2015, 3(16): 8526 doi: 10.1039/C5TA00309A
|
[45] |
Zhang Y, Wang J S, Qiu J J, et al. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity. Appl Energy, 2019, 237: 83 doi: 10.1016/j.apenergy.2018.12.075
|
[46] |
Liu C H, Xu Z, Song Y, et al. A novel shape-stabilization strategy for phase change thermal energy storage. J Mater Chem A, 2019, 7(14): 8194 doi: 10.1039/C9TA01496A
|
[47] |
Zhou M, Lin T Q, Huang F Q, et al. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv Funct Mater, 2013, 23(18): 2263 doi: 10.1002/adfm.201202638
|
[48] |
Xu B W, Li Z J. Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy, 2014, 72: 371 doi: 10.1016/j.energy.2014.05.049
|
[49] |
Karaipekli A, Bi?er A, Sari A, et al. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manage, 2017, 134: 373 doi: 10.1016/j.enconman.2016.12.053
|
[50] |
Karaman S, Karaipekli A, Sari A, et al. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells, 2011, 95(7): 1647 doi: 10.1016/j.solmat.2011.01.022
|
[51] |
Wei H T, Li X Q. Preparation and characterization of a lauric-myristic-stearic acid/Al2O3-loaded expanded vermiculite composite phase change material with enhanced thermal conductivity. Sol Energy Mater Sol Cells, 2017, 166: 1
|
[52] |
Wang W L, Yang X X, Fang Y T, et al. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-aluminum nitride. Appl Energy, 2009, 86(7-8): 1196 doi: 10.1016/j.apenergy.2008.10.020
|
[53] |
Wang J J, Huang X B, Gao H Y, et al. Construction of CNT@ Cr?MIL?101?NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity. Chem Eng J, 2018, 350: 164 doi: 10.1016/j.cej.2018.05.190
|
[54] |
Li A, Wang J J, Dong C, et al. Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity. Appl Energy, 2018, 217: 369 doi: 10.1016/j.apenergy.2017.12.106
|