<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
WAN Su-wei, CHEN Jia-lin, LI Shi-hong, LI Jun-peng. Research progress on new materials and properties of electronic skin[J]. Chinese Journal of Engineering, 2020, 42(6): 704-714. doi: 10.13374/j.issn2095-9389.2019.07.18.001
Citation: WAN Su-wei, CHEN Jia-lin, LI Shi-hong, LI Jun-peng. Research progress on new materials and properties of electronic skin[J]. Chinese Journal of Engineering, 2020, 42(6): 704-714. doi: 10.13374/j.issn2095-9389.2019.07.18.001

Research progress on new materials and properties of electronic skin

doi: 10.13374/j.issn2095-9389.2019.07.18.001
More Information
  • Corresponding author: E-mail: lijunpeng@ipm.com.cn
  • Received Date: 2019-07-18
  • Publish Date: 2020-06-01
  • Human skin is an extraordinary organ; it comprises an integrated, stretchable network of sensors that transmits information to the brain about tactile and thermal stimuli, enabling us to safely and efficiently operate in our environment. Researchers have become interested in large-scale electronic device networks inspired by human skin, motivated by the prospect of developing devices such as autonomous smart robots and bionic prostheses. Developing electronic networks consist of flexible, stretchable, and robust devices that are compliant with large-scale implementation and integrated with multiple functionalities is a testament to the progress in developing human-skin like electronic bodies. In the fields of human physiological parameter detection and robot tactile perception, electronic skin has been commonly used as a kind of flexible tactile biomimetic sensor. Conventional electronic skin tactile sensors based on metal and semiconductor materials do not meet the requirements for stretchability and portability during actual use because of poor flexibility and wearability. Attributed to the rapid development of flexible materials, and manufacturing and sensing technologies, new materials such as polydimethylsiloxane (PDMS), carbon nanotubes, and graphene have been used to prepare or support electronic skin sensors in recent years, thus enabling electronic skin to be more similar to human skin in terms of stretchability, compressibility, and spatial resolution of touch, and other properties. Now, multi-functional integrated electronic skin devices have realized interaction with smart devices to obtain further collection and processing of human body information. This study analyzed and discussed new electronic skin materials and sensing technologies used in electronic skin, including capacitive effects, piezoelectric effects, piezoresistive effects, optical effects, and wireless antenna sensing. We focused on the recent research progress in electronic skin in terms of stretch/compressibility, biocompatibility, biodegradability, self-power, self-healing, temperature sensitivity, and multi-functional integration. Moreover, we anticipate the future research directions of new electronic skin properties and possible ways to achieve large-area, low-cost, multi-function integrated electronic skin sensor arrays.

     

  • loading
  • [1]
    Amjadi M, Kyung K U, Park I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater, 2016, 26(11): 1678 doi: 10.1002/adfm.201504755
    [2]
    Bae G Y, Pak S W, Kim D, et al. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater, 2016, 28(26): 5300 doi: 10.1002/adma.201600408
    [3]
    Trung T Q, Lee N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater, 2016, 28(22): 4338 doi: 10.1002/adma.201504244
    [4]
    Wang X D, Zhang H L, Dong L, et al. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv Mater, 2016, 28(15): 2896 doi: 10.1002/adma.201503407
    [5]
    Xu S, Zhang Y H, Jia L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 2014, 344(6179): 70 doi: 10.1126/science.1250169
    [6]
    Zhong W B, Liu Q Z, Wu Y Z, et al. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. Nanoscale, 2016, 8(24): 12105 doi: 10.1039/C6NR02678H
    [7]
    Hammock M L, Chortos A, Tee B C K, et al. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25(42): 5997 doi: 10.1002/adma.201302240
    [8]
    Wu Z C, Chen Z H, Du X, et al. Transparent, conductive carbon nanotube films. Science, 2004, 305(5688): 1273 doi: 10.1126/science.1101243
    [9]
    Opatkiewicz J P, LeMieux M C, Liu D, et al. Using nitrile functional groups to replace amines for solution-deposited single-walled carbon nanotube network films. ACS Nano, 2012, 6(6): 4845 doi: 10.1021/nn300124y
    [10]
    Small W R, in het Panhuis M. Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small, 2007, 3(9): 1500 doi: 10.1002/smll.200700110
    [11]
    Kang S J, Kocabas C, Ozel T, et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotechnol, 2007, 2: 230 doi: 10.1038/nnano.2007.77
    [12]
    Lipomi D J, Vosgueritchian M, Tee B C K, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnol, 2011, 6: 788 doi: 10.1038/nnano.2011.184
    [13]
    Lin D W, Bettinger C J, Ferreira J P, et al. A cell-compatible conductive film from a carbon nanotube network adsorbed on poly-L-lysine. ACS Nano, 2011, 5(12): 10026 doi: 10.1021/nn203870c
    [14]
    Wang K, Ruan J, Song H, et al. Biocompatibility of graphene oxide. Nanoscale Res Lett, 2011, 6: art. No. 8 doi: 10.1007/s11671-010-9751-6
    [15]
    Bettinger C J, Bao Z N. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv Mater, 2010, 22(5): 651 doi: 10.1002/adma.200902322
    [16]
    Tee B C K, Wang C, Allen R, et al. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnol, 2012, 7: 825 doi: 10.1038/nnano.2012.192
    [17]
    Lipomi D J, Tee B C K, Vosgueritchian M, et al. Stretchable organic solar cells. Adv Mater, 2011, 23(15): 1771 doi: 10.1002/adma.201004426
    [18]
    Jeon J, Lee H B R, Bao Z N. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv Mater, 2013, 25(6): 850 doi: 10.1002/adma.201204082
    [19]
    Kim H J, Sim K, Thukral A, et al. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci Adv, 2017, 3(9): art. No. e1701114
    [20]
    金欣, 暢旭東, 王聞宇, 等. 基于聚二甲基硅氧烷柔性可穿戴傳感器研究進展. 材料工程, 2018, 46(11):13 doi: 10.11868/j.issn.1001-4381.2018.000097

    Jin X, Chang X D, Wang W Y, et al. Research progress in flexible wearable strain sensors based on polydimethylsiloxane. J Mater Eng, 2018, 46(11): 13 doi: 10.11868/j.issn.1001-4381.2018.000097
    [21]
    蔡依晨, 黃維, 董曉臣. 可穿戴式柔性電子應變傳感器. 科學通報, 2017, 62(7):635 doi: 10.1360/N972015-01445

    Cai Y C, Huang W, Dong X C. Wearable and flexible electronic strain sensor. Chin Sci Bull, 2017, 62(7): 635 doi: 10.1360/N972015-01445
    [22]
    何崟, 周藝穎, 劉皓, 等. 基于碳材料的柔性壓力傳感器研究進展. 化工進展, 2018, 37(7):2664

    He Y, Zhou Y Y, Liu H, et al. Research progress of flexible pressure sensors based on carbon materials. Chem Ind Eng Prog, 2018, 37(7): 2664
    [23]
    羅實, 周熙, 楊俊, 等. 碳納米材料在柔性壓力傳感器中的應用. 功能材料, 2018, 49(8):08048

    Luo S, Zhou X, Yang J, et al. The application of carbon nanomaterials in the flexible pressure sensor. J Funct Mater, 2018, 49(8): 08048
    [24]
    Clippinger F W, Avery R, Titus B R. A sensory feedback system for an upper-limb amputation prosthesis. Bull Pusthet Res, 1974: 247
    [25]
    Codd R D, Nightingale J M, Todd R W. An adaptive multi-functional hand prosthesis. J Physiology, 1973, 232(2): 55P
    [26]
    張超然, 劉婉姬, 王立石, 等. 電子皮膚專利分析. 中國發明與專利, 2016(3):26 doi: 10.3969/j.issn.1672-6081.2016.03.006

    Zhang C R, Liu W J, Wang L S, et al. Electronic skin patent analysis. China Invent Patent, 2016(3): 26 doi: 10.3969/j.issn.1672-6081.2016.03.006
    [27]
    Schwartz G, Tee B C K, Mei J G, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Commun, 2013, 4: 1859 doi: 10.1038/ncomms2832
    [28]
    Moon J H, Baek D H, Choi Y Y, et al. Wearable polyimide–PDMS electrodes for intrabody communication. J Micromech Microeng, 2010, 20(2): 025032 doi: 10.1088/0960-1317/20/2/025032
    [29]
    Jung H C, Moon J H, Baek D H, et al. CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Trans Biomed Eng, 2012, 59(5): 1472 doi: 10.1109/TBME.2012.2190288
    [30]
    Chen C Y, Chang C L, Chien T F, et al. Flexible PDMS electrode for one-point wearable wireless bio-potential acquisition. Sens Actuators A, 2013, 203: 20 doi: 10.1016/j.sna.2013.08.010
    [31]
    Jung J M, Cha D Y, Kim D S, et al. Development of PDMS-based flexible dry type SEMG electrodes by micromachining technologies. Appl Phys A, 2014, 116(3): 1395 doi: 10.1007/s00339-014-8244-3
    [32]
    Graudejus O, G?rrn P, Wagner S. Controlling the morphology of gold films on poly (dimethylsiloxane). ACS Appl Mater Interfaces, 2010, 2(7): 1927 doi: 10.1021/am1002537
    [33]
    Adrega T, Lacour S P. Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J Micromech Microeng, 2010, 20(5): art. No. 055025
    [34]
    Ryu S, Lee P, Chou J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano, 2015, 9(6): 5929 doi: 10.1021/acsnano.5b00599
    [35]
    Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnol, 2011, 6: 296 doi: 10.1038/nnano.2011.36
    [36]
    Liu N, Chortos A, Lei T, et al. Ultratransparent and stretchable graphene electrodes. Sci Adv, 2017, 3(9): e1700159 doi: 10.1126/sciadv.1700159
    [37]
    Boland C S, Khan U, Backes C, et al. Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano, 2014, 8(9): 8819 doi: 10.1021/nn503454h
    [38]
    Wu W Z, Wen X N, Wang Z L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science, 2013, 340(6135): 952 doi: 10.1126/science.1234855
    [39]
    Sinha S K, Noh Y, Reljin N, et al. Screen-printed PEDOT: PSS electrodes on commercial finished textiles for electrocardiography. ACS Appl Mater Interfaces, 2017, 9(43): 37524 doi: 10.1021/acsami.7b09954
    [40]
    Hage-Ali S, Tiercelin N, Coquet P, et al. A millimeter-wave inflatable frequency-agile elastomeric antenna. IEEE Antennas Wirel Propag Lett, 2010, 9: 1131 doi: 10.1109/LAWP.2010.2096405
    [41]
    Zang Y P, Zhang F J, Di C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater Horiz, 2015, 2(2): 140 doi: 10.1039/C4MH00147H
    [42]
    Bae S H, Lee Y, Sharma B K, et al. Graphene-based transparent strain sensor. Carbon, 2013, 51: 236 doi: 10.1016/j.carbon.2012.08.048
    [43]
    Chou H H, Nguyen A, Chortos A, et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Commun, 2015, 6: 8011 doi: 10.1038/ncomms9011
    [44]
    Cai L, Song L, Luan P S, et al. Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep, 2013, 3: 3048 doi: 10.1038/srep03048
    [45]
    Jeong J W, Kim M K, Cheng H, et al. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv Healthcare Mater, 2014, 3(5): 642 doi: 10.1002/adhm.201300334
    [46]
    Dargahi J, Najarian S. Human tactile perception as a standard for artificial tactile sensing—a review. Int J Med Rob Comput Assist Surg, 2004, 1(1): 23 doi: 10.1002/rcs.3
    [47]
    Sun Q J, Seung W, Kim B J, et al. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv Mater, 2015, 27(22): 3411 doi: 10.1002/adma.201500582
    [48]
    Yun S, Park S, Park B, et al. Polymer-waveguide-based flexible tactile sensor array for dynamic response. Adv Mater, 2014, 26(26): 4474 doi: 10.1002/adma.201305850
    [49]
    Ramuz M, Tee B C K, Tok J B H, et al. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater, 2012, 24(24): 3223 doi: 10.1002/adma.201200523
    [50]
    Wagner S, Bauer S. Materials for stretchable electronics. MRS Bull, 2012, 37(3): 207 doi: 10.1557/mrs.2012.37
    [51]
    Yao S S, Zhu Y. Stretchable conductors: nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv Mater, 2015, 27(9): 1479 doi: 10.1002/adma.201570061
    [52]
    Yan C Y, Lee P S. Stretchable energy storage and conversion devices. Small, 2014, 10(17): 3443 doi: 10.1002/smll.201302806
    [53]
    Lipomi D J, Bao Z N. Stretchable and ultraflexible organic electronics. MRS Bull, 2017, 42(2): 93 doi: 10.1557/mrs.2016.325
    [54]
    Matsuhisa N, Kaltenbrunner M, Yokota T, et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nature Commun, 2015, 6: 7461 doi: 10.1038/ncomms8461
    [55]
    Tybrandt K, V?r?s J. Fast and efficient fabrication of intrinsically stretchable multilayer circuit boards by wax pattern assisted filtration. Small, 2016, 12(2): 180 doi: 10.1002/smll.201502849
    [56]
    Wang Y, Zhu C X, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv, 2017, 3(3): art. No. e1602076
    [57]
    Kim H, Ahn J H. Graphene for flexible and wearable device applications. Carbon, 2017, 120: 244 doi: 10.1016/j.carbon.2017.05.041
    [58]
    Wang S H, Xu J, Wang W C, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555(7694): 83 doi: 10.1038/nature25494
    [59]
    Poland C A, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnol, 2008, 3: 423 doi: 10.1038/nnano.2008.111
    [60]
    Pantarotto D, Briand J P, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun, 2004(1): 16 doi: 10.1039/b311254c
    [61]
    Boutry C M, Kaizawa Y, Schroeder B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nature Electron, 2018, 1: 314 doi: 10.1038/s41928-018-0071-7
    [62]
    Chen G, Matsuhisa N, Liu Z Y, et al. Plasticizing silk protein for on-skin stretchable electrodes. Adv Mater, 2018, 30(21): art. No. e1800129
    [63]
    Kim S H, Seo H, Kang J, et al. An ultrastretchable and self-healable nanocomposite conductor enabled by autonomously percolative electrical pathways. ACS Nano, 2019, 13(6): 6531 doi: 10.1021/acsnano.9b00160
    [64]
    Lipomi D J, Chong H, Vosgueritchian M, et al. Toward mechanically robust and intrinsically stretchable organic solar cells: evolution of photovoltaic properties with tensile strain. Sol Energy Mater Sol Cells, 2012, 107: 355 doi: 10.1016/j.solmat.2012.07.013
    [65]
    Han S, Kim J, Won S M, et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci Transl Med, 2018, 10(435): art. No. eaan4950
    [66]
    Kim D H, Lu N S, Ma R, et al. Epidermal electronics. Science, 2011, 333(6044): 838 doi: 10.1126/science.1206157
    [67]
    Hua Q L, Sun J L, Liu H T, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nature Commun, 2018, 9: 244 doi: 10.1038/s41467-017-02685-9
    [68]
    Molina-Lopez F, Gao T Z, Kraft U, et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nature Commun, 2019, 10: 2676 doi: 10.1038/s41467-019-10569-3
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)

    Article views (2793) PDF downloads(177) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频