Citation: | LI Xiao-li, ZHANG Bo, YANG Xu. Column-generation PM2.5 prediction based on image mixture kernel[J]. Chinese Journal of Engineering, 2020, 42(7): 922-929. doi: 10.13374/j.issn2095-9389.2019.07.15.002 |
[1] |
張熙來, 趙儉輝, 蔡波. 針對PM2.5單時間序列數據的動態調整預測模型. 自動化學報, 2018, 44(10):1790
Zhang X L, Zhao J H, Cai B. Prediction model with dynamic adjustment for single time series of PM2.5. Acta Automatica Sinica, 2018, 44(10): 1790
|
[2] |
Zhan Y, Luo Y Z, Deng X F, et al. Spatiotemporal prediction of continuous daily PM2.5, concentrations across China using a spatially explicit machine learning algorithm. Atmos Environ, 2017, 155: 129 doi: 10.1016/j.atmosenv.2017.02.023
|
[3] |
Sun W, Sun J Y. Daily PM2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm. J Environ Manage, 2016, 188: 144
|
[4] |
曲悅, 錢旭, 宋洪慶, 等. 基于機器學習的北京市PM2.5濃度預測模型及模擬分析. 工程科學學報, 2019, 41(3):401
Qu Y, Qian X, Song H Q, et al. Machine-learning-based model and simulation analysis of PM2.5 concentration prediction in Beijing. Chin J Eng, 2019, 41(3): 401
|
[5] |
Russo A, Raischel F, Lind P G. Air quality prediction using optimal neural networks with stochastic variables. Atmos Environ, 2013, 79: 822 doi: 10.1016/j.atmosenv.2013.07.072
|
[6] |
李建更, 羅奧榮, 李曉理. 基于互補集合經驗模態分解與支持向量回歸的PM2.5質量濃度預測. 北京工業大學學報, 2018, 44(12):1494
Li J G, Luo A R, Li X L. Prediction of PM2.5 mass concentration based on complementary ensemble empirical mode decomposition and support vector regression. J Beijing Univ Technol, 2018, 44(12): 1494
|
[7] |
Liu C B, Tsow F, Zou Y, et al. Particle pollution estimation based on image analysis. PloS One, 2016, 11(2): e0145955 doi: 10.1371/journal.pone.0145955
|
[8] |
Gu K, Qiao J F, Li X L. Highly efficient picture-based prediction of PM2.5 concentration. IEEE Trans Ind Electron, 2019, 66(4): 3176 doi: 10.1109/TIE.2018.2840515
|
[9] |
李曉理, 張山, 王康. 基于圖像質量分析的PM2.5空氣質量預測. 北京工業大學學報, 2020, 46(2):191
Li X L, Zhang S, Wang K. PM2.5 air quality prediction based on image quality analysis. J Beijing Univ Technol, 2020, 46(2): 191
|
[10] |
汪洪橋, 孫富春, 蔡艷寧, 等. 多核學習方法. 自動化學報, 2010, 36(8):1037 doi: 10.3724/SP.J.1004.2010.01037
Wang H Q, Sun F C, Cai Y N, et al. On multiple kernel learning methods. Acta Autom Sin, 2010, 36(8): 1037 doi: 10.3724/SP.J.1004.2010.01037
|
[11] |
Fink M, Desaulniers G, Frey M, et al. Column generation for vehicle routing problems with multiple synchronization constraints. Eur J Oper Res, 2019, 272(2): 699 doi: 10.1016/j.ejor.2018.06.046
|
[12] |
李航. 統計學習方法. 北京: 清華大學出版社, 2012
Li H. Statistical Learning Method. Beijing: Tsinghua University Press, 2012
|
[13] |
Demiriz A, Bennett K P, Shawe-Taylor J. Linear programming boosting via column generation. Mach Learn, 2002, 46(1-3): 225
|
[14] |
Bi J B, Zhang T, Bennett K P. Column-generation boosting methods for mixture of kernels//Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, 2004: 521
|
[15] |
Vapnik V. The Nature of Statistical Learning Theory. Springer Science & Business Media, 2013
|
[16] |
Berman D, Treibitz T, Avidan S. Single image dehazing using haze-lines. IEEE Trans Pattern Anal Mach Intell, 2018, 42(3): 720
|
[17] |
Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. John Wiley & Sons, 2016
|
[18] |
Graves N, Newsam S. Camera-based visibility estimation: Incorporating multiple regions and unlabeled observations. Ecol Inform, 2014, 23: 62 doi: 10.1016/j.ecoinf.2013.08.005
|
[19] |
He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell, 2011, 33(12): 2341 doi: 10.1109/TPAMI.2010.168
|
[20] |
Kim K W, Kim Y J. Perceived visibility measurement using the HSI color difference method. J Korean Phys Soc, 2005, 46(5): 1243
|
[21] |
袁立, 穆志純, 劉磊明. 基于核主元分析法和支持向量機的人耳識別. 北京科技大學學報, 2006, 28(9):890 doi: 10.3321/j.issn:1001-053X.2006.09.019
Yuan L, Mu Z C, Liu L M. Ear recognition based on kernel principal component analysis and support vector machine. J Univ Sci Technol Beijing, 2006, 28(9): 890 doi: 10.3321/j.issn:1001-053X.2006.09.019
|