<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
YIN Sheng-hua, LIU Jia-ming, CHEN Wei, ZOU Long, KOU Yong-yuan, LI Xi-wen. Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation[J]. Chinese Journal of Engineering, 2020, 42(7): 829-837. doi: 10.13374/j.issn2095-9389.2019.07.14.005
Citation: YIN Sheng-hua, LIU Jia-ming, CHEN Wei, ZOU Long, KOU Yong-yuan, LI Xi-wen. Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation[J]. Chinese Journal of Engineering, 2020, 42(7): 829-837. doi: 10.13374/j.issn2095-9389.2019.07.14.005

Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation

doi: 10.13374/j.issn2095-9389.2019.07.14.005
More Information
  • Corresponding author: E-mail: 1605920727@qq.com
  • Received Date: 2019-07-14
  • Publish Date: 2020-07-01
  • Hydration and setting time of paste-like backfill slurry in the Gansu Province’s Jinchuan copper and nickel mine is slow, and the degree of segregation of coarse aggregate is high, seriously affecting the quality of cemented paste backfill. In this paper, by taking the unclassified tailings, waste rock and rod milling sand in Jinchuan’s No. 2 mining area as the experimental materials, and adopting the comprehensive test design method, the effects of different mass fraction, coarse aggregates and tailings-coarse aggregate ratio (mass ratio of unclassified tailings to coarse aggregate) on the setting performance, unconfined compressive strength and rheological properties of cemented paste backfill were studied. The experimental results show that the coarse aggregate's specific surface area and chemical composition (active MgO and CaO) in the unclassified tailings-coarse aggregate paste are the main factors influencing the setting time. Increasing the tailings-coarse aggregate ratio decreased the setting time of the paste backfill theory. Increasing the tailings-coarse aggregate ratio increased the yield stress of paste backfill slurry. With the increase in the tailings-coarse aggregate ratio, the plastic viscosity of paste backfill slurry (unclassified tailings-waste rock, unclassified tailings-waste rock-rod milling sand paste) increased. The unconfined compressive strength of the unclassified tailings-waste rock paste is better than that of the unclassified tailings-waste rock-rod milling sand paste. The shortest setting time and the best unconfined compressive strength (the unclassified tailings-waste rock paste, tailings-coarse aggregate ratio 5∶5) were reduced by 2.1 h, individually. They were also increased by more than 33% relative to the setting time, and unconfined compressive strength of the mine. Finally, the setting performance was optimized for single-objective and multi-objective regression. The multi-objective regression optimization showed that optimum setting time for the unclassified tailings-waste rock-rod milling sand paste was approximately 270 to 300 min, while for the unclassified tailings waste rock rod milling sand was approximately 10∶6∶6–10∶7∶7 and yield stress was about 167.0 to 169.0 Pa. The optimum setting time of the unclassified tailings-rod milling sand paste was found to be about 300–330 min for the single-objective regression, the unclassified tailings rod milling sand was approximately 10∶14–10∶16, and yield stress was about 164.0–167.0 Pa, which met the mine production requirements.

     

  • loading
  • [1]
    Cui L, Fall M. An evolutive elasto-plastic model for cemented paste backfill. Comput Geotech, 2016, 71: 19 doi: 10.1016/j.compgeo.2015.08.013
    [2]
    楊志強, 王永前, 高謙, 等. 金川礦山充填采礦固體廢棄物綜合利用關鍵技術. 資源環境與工程, 2014, 28(5):706 doi: 10.3969/j.issn.1671-1211.2014.05.024

    Yang Z Q, Wang Y Q, Gao Q, et al. Key technologies for comprehensive utilization of solid waste from filling mining in jinchuan mine. Resour Environ Eng, 2014, 28(5): 706 doi: 10.3969/j.issn.1671-1211.2014.05.024
    [3]
    Luo T, Wang Q, Zhuang S Y, et al. Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Tech, 2019, 345: 54 doi: 10.1016/j.powtec.2018.12.094
    [4]
    王洪江, 李輝, 吳愛祥, 等. 鍺廢渣摻量對水泥及膏體水化凝結的影響規律. 中南大學學報: 自然科學版, 2013(2):743

    Wang H J, Li H, Wu A X, et al. Effects of germanium waste residue content on hydration and setting of cement and paste. J Cent South Univ Sci Technol, 2013(2): 743
    [5]
    鄧樹峰. 鋼渣粉對混凝土凝結時間和強度的影響研究. 福建建材, 2018, 203(3):17

    Deng S F. Effects of steel slag powder on the setting time and strength of concrete. Fujian building mater, 2018, 203(3): 17
    [6]
    王方正, 王洪江, 李公成, 等. 骨料粒級對膏體凝結性能影響的研究. 礦業研究與開發, 2018, 38(11):35

    Wang F Z, Wang H J, Li G C, et al. Study on the effect of aggregate size on paste setting property. Min Res Dev, 2018, 38(11): 35
    [7]
    Elyamany H E, Abd E A E M, Elshaboury A M. Setting time and 7-day strength of geopolymer mortar with various binders. Constr Build Mater, 2018, 187: 974 doi: 10.1016/j.conbuildmat.2018.08.025
    [8]
    王曉帆. 金川二礦區綠色礦山建設規劃方案. 現代礦業, 2017(5):252

    Wang X F. Green mine construction planning scheme of jinchuan no. 2 mining area. Mod Min, 2017(5): 252
    [9]
    吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 科學出版社, 2015

    Wu A X, Wang H J. Theory and Technology of Metal Mine Cemented Paste Backfill. Beijing: Science Press, 2015
    [10]
    江麗珍, 顏碧蘭, 劉晨, 等. GB/T1346《水泥標準稠度用水量、凝結時間、安定性檢驗方法》修訂內容介紹. 水泥, 2012(9):40

    Jiang L Z, Yan B L, Liu C, et al. Revision introduction of GB/T1346 water consumption for cement standard consistency, setting time and stability test method. Cement, 2012(9): 40
    [11]
    Yin S H, Wu A X, Hu K, et al. The effect of solid components on the rheological and mechanical properties of cemented paste backfill. Miner Eng, 2012, 35: 61 doi: 10.1016/j.mineng.2012.04.008
    [12]
    施瀟韻. 水灰比對水泥凈漿凝結時間的影響. 四川水泥, 2018(7):07

    Shi X Y. Effect of water-cement ratio on setting time of cement net slurry. Sichuan Cement, 2018(7): 07
    [13]
    張磊, 王洪江, 吳愛祥, 等. 硫化鈉對某鉛鋅礦充填膏體凝結性能的影響. 金屬礦山, 2016, 45(9):44 doi: 10.3969/j.issn.1001-1250.2016.09.007

    Zhang L, Wang H J, Wu A X, et al. Effect of sodium sulfide on setting property of filling paste in a lead-zinc mine. Met mine, 2016, 45(9): 44 doi: 10.3969/j.issn.1001-1250.2016.09.007
    [14]
    尹升華, 劉家明, 邵亞建, 等. 全尾砂–粗骨料膏體早期抗壓強度影響規律及固化機理. 中南大學學報: 自然科學版, 2020, 51(2):478

    Yin S H, Liu J M, Shao Y J, et al. Influence rule of early compressive strength and solidification mechanism of full tailings paste with coarse aggregate. J Cent South Univ Sci Technol, 2020, 51(2): 478
    [15]
    郭生茂. 基于高爐水淬渣的礦山膠結充填材料與工藝研究. 甘肅冶金, 2007, 29(4):01

    Guo S M. Study on cementing materials and technology of mine filling based on blast furnace water quenching slag. Gansu metall, 2007, 29(4): 01
    [16]
    劉曉輝, 吳愛祥, 王洪江, 等. 膏體流變參數影響機制及計算模型. 工程科學學報, 2017, 39(2):190

    Liu X H, Wu A X, Wang H J, et al. Influence mechanism and calculation model of CPB rheological parameters. Chin J Eng, 2017, 39(2): 190
    [17]
    Yang L H, Wang H J, Wu A X, Li H, et al. Effect of mixing time on hydration kinetics and mechanical property of cemented paste backfill. Constr Build Mater, 2020, 247: 118516 doi: 10.1016/j.conbuildmat.2020.118516
    [18]
    顏丙恒, 李翠平, 吳愛祥, 等. 膏體料漿管道輸送中粗顆粒遷移的影響因素分析. 中國有色金屬學報, 2018, 28(10):201

    Yan B H, Li C P, Wu A X, et al. Analysis of influencing factors of coarse particle migration in paste slurry pipeline. Chin J Nonferrous Met, 2018, 28(10): 201
    [19]
    Boger D V. Rheology and the resource industries. Chem Eng Sci, 2009, 64(22): 4525 doi: 10.1016/j.ces.2009.03.007
    [20]
    蘇金明, 阮沈勇, 王永利. MATLAB 工程數學. 北京: 電子工業出版社, 2005

    Su J M, Ruan S Y, Wang Y L. MATLAB engineering mathematics. Beijing: Electronic Industry Press, 2005
    [21]
    蘭文濤, 吳愛祥, 王貽明. 凝水膨脹充填復合材料的配比優化與形成機制. 復合材料學報, 2019, 36:2

    Lan W T, Wu A X, Wang Y M. Formulation optimization and formation mechanism of condensate expansion and filling composites. Acta Mater Compos Sin, 2019, 36: 2
    [22]
    張海濤. 巧解多元函數的最值. 山西大同大學學報: 自然科學版, 2017, 33(5):1

    Zhang H T. The best value of multivariate functions. J Shanxi Datong Univ Sci Technol, 2017, 33(5): 1
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views (1214) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频