<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
SONG Cheng-min, ZHANG Guo-hua, CHOU Kuo-chih. Effect of Al2O3 addition on the sintering behavior of nano tungsten powder[J]. Chinese Journal of Engineering, 2020, 42(7): 875-883. doi: 10.13374/j.issn2095-9389.2019.07.13.001
Citation: SONG Cheng-min, ZHANG Guo-hua, CHOU Kuo-chih. Effect of Al2O3 addition on the sintering behavior of nano tungsten powder[J]. Chinese Journal of Engineering, 2020, 42(7): 875-883. doi: 10.13374/j.issn2095-9389.2019.07.13.001

Effect of Al2O3 addition on the sintering behavior of nano tungsten powder

doi: 10.13374/j.issn2095-9389.2019.07.13.001
More Information
  • A two-step reduction method was used to synthesize nano tungsten powder via carbothermic pre-reduction of tungsten oxide, followed by a deep hydrogen reduction. In this process, carbon black first reduced most of the oxygen in tungsten trioxide, while the residual oxygen was removed by hydrogen reduction. The tungsten powder prepared by the two-step reduction method had a spherical shape with an average grain size of 90 nm. Simultaneously, tungsten powders doped with 1% and 2% alumina (mass fraction) were similarly prepared to study the effect of alumina on its sintering behavior. Analysis of fracture morphologies and average grain size of sintered samples showed that alumina significantly inhibited grain growth at the final sintering stage and grain size decreased at the same sintering temperature with an increase in the alumina content. At 1600 ℃, the average grain size of sintered sample of pure tungsten was approximately 2.75 μm, but it was about 1.5 μm for the sintered samples doped with 1% and 2% alumina. This finding could be based on the fact that tungsten grain growth in the final stage of sintering can be effectively inhibited by alumina particles. The sintered pure tungsten powder and alumina doped tungsten powders had different hardness variation levels with temperature increase. The hardness of the sintered sample doped with alumina has always increased with temperature increases, reaching a maximum value above 800 HV. As for the sintered sample of pure tungsten, the hardness first increased and then decreased with temperature increase, reached its maximum value of 473.6 HV at 1400 °C that was caused by the rapid growth of grain size of tungsten at higher temperatures. At a sintering temperature of 1600 ℃, the relative density of the pure tungsten powder was 98.52%, while that of the tungsten powder doped with 1% and 2% alumina were 95.43% and 93.5%, respectively.

     

  • loading
  • [1]
    Han Y, Fan J L, Liu T, et al. The effect of trace nickel additive and ball milling treatment on the near-full densification behavior of ultrafine tungsten powder. Int J Refract Met Hard Mater, 2012, 34: 18 doi: 10.1016/j.ijrmhm.2012.02.014
    [2]
    Li B Q, Sun Z Q, Hou G L, et al. The sintering behavior of quasi-spherical tungsten nanopowders. Int J Refract Met Hard Mater, 2016, 56: 44 doi: 10.1016/j.ijrmhm.2015.10.007
    [3]
    Kaufmann M, Neu R. Tungsten as first wall material in fusion devices. Fusion Eng Des, 2007, 82(5-14): 521 doi: 10.1016/j.fusengdes.2007.03.045
    [4]
    Ren C, Fang Z Z, Zhang H, et al. The study on low temperature sintering of nano-tungsten powders. Int J Refract Met Hard Mater, 2016, 61: 273 doi: 10.1016/j.ijrmhm.2016.10.003
    [5]
    Kitsunai Y, Kurishita H, Kayano H, et al. Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC. J Nucl Mater, 1999, 271-272: 423 doi: 10.1016/S0022-3115(98)00753-3
    [6]
    Kurishita H, Amano Y, Kobayashi S, et al. Development of ultra-fine grained W–TiC and their mechanical properties for fusion applications. J Nucl Mater, 2007, 367-370: 1453 doi: 10.1016/j.jnucmat.2007.04.008
    [7]
    Kecskes L J, Cho K C, Dowding R J, et al. Grain size engineering of bcc refractory metals: top-down and bottom-up—Application to tungsten. Mater Sci Eng A, 2007, 467(1-2): 33 doi: 10.1016/j.msea.2007.02.099
    [8]
    談軍, 周張健, 屈丹丹, 等. 超細晶鎢及其復合材料的研究現狀. 粉末冶金工業, 2012, 22(3):56 doi: 10.3969/j.issn.1006-6543.2012.03.010

    Tan J, Zhou Z J, Qu D D, et al. Current status of the ultra-fine grained tungsten and its alloys. Powder Metall Ind, 2012, 22(3): 56 doi: 10.3969/j.issn.1006-6543.2012.03.010
    [9]
    Ren C, Koopman M, Fang Z Z, et al. A study on the sintering of ultrafine grained tungsten with Ti-based additives. Int J Refract Met Hard Mater, 2017, 65: 2 doi: 10.1016/j.ijrmhm.2016.11.013
    [10]
    Zhang S W, Wen Y, Zhang H J. Low temperature preparation of tungsten nanoparticles from molten salt. Powder Technol, 2014, 253: 464 doi: 10.1016/j.powtec.2013.11.052
    [11]
    Ryu T, Sohn H Y, Hwang K S, et al. Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor. Int J Refract Met Hard Mater, 2009, 27(1): 149 doi: 10.1016/j.ijrmhm.2008.06.002
    [12]
    Ricceri R, Matteazzi P. A study of formation of nanometric W by room temperature mechanosynthesis. J Alloys Compd, 2003, 358(1-2): 71 doi: 10.1016/S0925-8388(03)00125-7
    [13]
    Ryu T, Hwang K S, Choi Y J, et al. The sintering behavior of nanosized tungsten powder prepared by a plasma process. Int J Refract Met Hard Mater, 2009, 27(4): 701 doi: 10.1016/j.ijrmhm.2008.11.004
    [14]
    Groza J R, Zavaliangos A. Sintering activation by external electrical field. Mater Sci Eng A, 2000, 287(2): 171 doi: 10.1016/S0921-5093(00)00771-1
    [15]
    Mondal A, Upadhyaya A, Agrawal D. Effect of heating mode on sintering of tungsten. Int J Refract Met Hard Mater, 2010, 28(5): 597 doi: 10.1016/j.ijrmhm.2010.05.002
    [16]
    Prabhu G, Chakraborty A, Sarma B. Microwave sintering of tungsten. Int J Refract Met Hard Mater, 2009, 27(3): 545 doi: 10.1016/j.ijrmhm.2008.07.001
    [17]
    Zhou Z J, Ma Y, Du J, et al. Fabrication and characterization of ultra-fine grained tungsten by resistance sintering under ultra-high pressure. Mater Sci Eng A, 2009, 505(1-2): 131 doi: 10.1016/j.msea.2008.11.012
    [18]
    Zhou Z J, Pintsuk G, Linke J, et al. Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure. Fusion Eng Des, 2010, 85(1): 115 doi: 10.1016/j.fusengdes.2009.08.003
    [19]
    Ding L, Xiang D P, Li Y Y, et al. Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering. Int J Refract Met Hard Mater, 2012, 33: 65 doi: 10.1016/j.ijrmhm.2012.02.017
    [20]
    Liu R, Zhou Y, Hao T, et al. Microwave synthesis and properties of fine-grained oxides dispersion strengthened tungsten. J Nucl Mater, 2012, 424(1-3): 171 doi: 10.1016/j.jnucmat.2012.03.008
    [21]
    Kim Y, Lee K H, Kim E P, et al. Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process. Int J Refract Met Hard Mater, 2009, 27(5): 842 doi: 10.1016/j.ijrmhm.2009.03.003
    [22]
    Rieth M, Dafferner B. Limitations of W and W?1%La2O3 for use as structural materials. J Nucl Mater, 2005, 342(1-3): 20 doi: 10.1016/j.jnucmat.2005.03.013
    [23]
    Yar M A, Wahlberg S, Bergqvist H, et al. Chemically produced nanostructured ODS–lanthanum oxide–tungsten composites sintered by spark plasma. J Nucl Mater, 2011, 408(2): 129 doi: 10.1016/j.jnucmat.2010.10.060
    [24]
    Yar M A, Wahlberg S, Bergqvist H, et al. Spark plasma sintering of tungsten?yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization. J Nucl Mater, 2011, 412(2): 227 doi: 10.1016/j.jnucmat.2011.03.007
    [25]
    Wesemann I, Spielmann W, Heel P, et al. Fracture strength and microstructure of ODS tungsten alloys. Int J Refract Met Hard Mater, 2010, 28(6): 687 doi: 10.1016/j.ijrmhm.2010.05.009
    [26]
    Li B Q, Sun Z Q, Hou G L, et al. The effects of alumina reinforcement and nickel activated sintering on nanosized tungsten matrix. J Alloys Compd, 2017, 692: 420 doi: 10.1016/j.jallcom.2016.09.081
    [27]
    Gaur R P S. Modern hydrometallurgical production methods for tungsten. JOM, 2006, 58(9): 45 doi: 10.1007/s11837-006-0082-0
    [28]
    Sun G D, Zhang G H. Novel pathway to prepare Mo nanopowder via hydrogen reduction of MoO2 containing Mo nanoseeds produced by reducing MoO3 with carbon black. JOM, 2019, 72: 347
    [29]
    Sun G D, Wang K F, Song C M, et al. A low-cost, efficient, and industrially feasible pathway for large scale preparation of tungsten nanopowders. Int J Refract Met Hard Mater, 2019, 78: 100 doi: 10.1016/j.ijrmhm.2018.08.013
    [30]
    Wang D H, Sun G D, Zhang G H. Preparation of ultrafine Mo powders via carbothermic pre-reduction of molybdenum oxide and deep reduction by hydrogen. Int J Refract Met Hard Mater, 2018, 75: 70 doi: 10.1016/j.ijrmhm.2018.04.002
    [31]
    Fang Z Z, Wang H T, Kumar V. Coarsening, densification, and grain growth during sintering of nano-sized powders—a perspective. Int J Refract Met Hard Mater, 2017, 62: 110 doi: 10.1016/j.ijrmhm.2016.09.004
    [32]
    Kim Y, Hong M H, Lee S H, et al. The effect of yttrium oxide on the sintering behavior and hardness of tungsten. Met Mater Int, 2006, 12(3): 245 doi: 10.1007/BF03027538
    [33]
    Wu X W, Luo J S, Lu B Z, et al. Crystal growth of tungsten during hydrogen reduction of tungsten oxide at high temperature. Trans Nonferrous Met Soc China, 2009, 19(Suppl 3): s785
    [34]
    Wang L, Zhang G H, Chou K C. Mechanism and kinetic study of hydrogen reduction of ultra-fine spherical MoO3 to MoO2. Int J Refract Met Hard Mater, 2016, 54: 342 doi: 10.1016/j.ijrmhm.2015.09.003
    [35]
    Dang J, Zhang G H, Chou K C, et al. Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2. Int J Refract Met Hard Mater, 2013, 41: 216 doi: 10.1016/j.ijrmhm.2013.04.002
    [36]
    Wang D H, Jiao S Q, Zhang G H, et al. Preparation of submicron Mo powders by the reaction between MoO2 and activated carbon. J Aust Ceram Soc, 2019, 55(2): 297 doi: 10.1007/s41779-018-0235-y
    [37]
    Wang D H, Zhang G H, Chou K C. A new route to produce submicron Mo powders via carbothermal pre-reduction followed by deep magnesium reduction. JOM, 2018, 70(11): 2561 doi: 10.1007/s11837-018-3062-2
    [38]
    Fang Z Z, Wang X, Ryu T, et al. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – a review. Int J Refract Met Hard Mater, 2009, 27(2): 288 doi: 10.1016/j.ijrmhm.2008.07.011
    [39]
    Wang H T, Fang Z Z. Kinetic analysis of densification behavior of nano-sized tungsten powder. J Am Ceram Soc, 2012, 95(8): 2458 doi: 10.1111/j.1551-2916.2012.05282.x
    [40]
    Wahlberg S, Yar M A, Abuelnaga M O, et al. Fabrication of nanostructured W–Y2O3 materials by chemical methods. J Mater Chem, 2012, 22(25): 12622 doi: 10.1039/c2jm30652b
    [41]
    Sylwestrowicz W, Hall E O. The deformation and ageing of mild steel. Proc Phys Soc Sect B, 2002, 64(6): 495
    [42]
    Dong Z, Liu N, Ma Z Q, et al. Microstructure refinement in W–Y2O3 alloy fabricated by wet chemical method with surfactant addition and subsequent spark plasma sintering. Sci Rep, 2017, 7: 6051 doi: 10.1038/s41598-017-06437-z
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)

    Article views (1379) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频