<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
YANG Jing, WU Jia, LI Hong-xia. User-aware edge-caching mechanism for mobile social network[J]. Chinese Journal of Engineering, 2020, 42(7): 930-938. doi: 10.13374/j.issn2095-9389.2019.07.12.001
Citation: YANG Jing, WU Jia, LI Hong-xia. User-aware edge-caching mechanism for mobile social network[J]. Chinese Journal of Engineering, 2020, 42(7): 930-938. doi: 10.13374/j.issn2095-9389.2019.07.12.001

User-aware edge-caching mechanism for mobile social network

doi: 10.13374/j.issn2095-9389.2019.07.12.001
More Information
  • Corresponding author: E-mail: 1309431264@qq.com
  • Received Date: 2019-07-12
  • Publish Date: 2020-07-01
  • With the rapid growth in the number of intelligent terminal devices and wireless multimedia applications, mobile communication traffic has exploded. The latest report from Cisco Visual Networking Index (CVNI) indicates that by 2022, global mobile data traffic will have grown to three times that in 2017, which will exert tremendous pressure on the backhaul link. One key approach to solve this problem is to cache popular content at the edges (base stations and mobile devices) and then bring the requested content from the edges close to the user, instead of obtaining the requested content from the content server through backhaul networks. Thus, by obtaining the required content of mobile users locally, edge caching can effectively improve network performance and reduce the pressure on the backhaul link. However, owing to the limited storage capacity of the edge nodes and the diversification of user requirements, the edge nodes can neither cache all the content in the content server nor randomly cache the content. To solve these problems, an edge-caching mechanism based on user-awareness was proposed. First, using an implicit semantic model, we predicted popular content in a macro cell in terms of the users’ interests. Small base stations within identical macro cells cache data cooperatively, which update local popular content based on the dynamic content preference of users. To further reduce the delay in content delivery, we helped users to ascertain their top communities of interest based on their content preferences. At the same time, the most appropriate user equipment (UE) is selected considering the caching willingness and caching ability to cache data for other UEs in identical communities of interest. Results show that the proposed mechanism outperforms the random cache approach and the most popular content-caching algorithm; it improves the cache hit rate and reduces the transmission delay while enhancing the quality of user experience.

     

  • loading
  • [1]
    思科. 思科年度互聯網報告(2018-2023)白皮書[R/OL]. 思科(2020-03-09)[2020-05-15]. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

    Cisco. Cisco annual internet report (2018–2023) white paper [R/OL]. Cisco (2020-03-09) [2020-05-15]. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
    [2]
    Wu D P, Zhang F, Wang H G, et al. Security-oriented opportunistic data forwarding in mobile social networks. Future Generation Comput Syst, 2018, 87: 803 doi: 10.1016/j.future.2017.07.028
    [3]
    Cai J L Z, Yan M Y, Li Y S. Using crowdsourced data in location-based social networks to explore influence maximization // IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications. San Francisco, 2016: 1
    [4]
    Gregori M, Gómez-Vilardebó J, Matamoros J, et al. Wireless content caching for small cell and D2D networks. IEEE J Sel Areas Commun, 2016, 34(5): 1222 doi: 10.1109/JSAC.2016.2545413
    [5]
    Jiang X W, Zhang T K, Zeng Z M. Content clustering and popularity prediction based caching strategy in content centric networking // 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). Sydney, 2017: 1
    [6]
    Zhang Y R, Pan E T, Song L Y, et al. Social network aware device-to-device communication in wireless networks. IEEE Trans Wireless Commun, 2015, 14(1): 177 doi: 10.1109/TWC.2014.2334661
    [7]
    Chen M Z, Saad W, Yin C C, et al. Echo state networks for proactive caching in cloud-based radio access networks with mobile users. IEEE Trans Wireless Commun, 2017, 16(6): 3520 doi: 10.1109/TWC.2017.2683482
    [8]
    Cheng Y Q, Wu M Q, Zhao M, et al. Socially-aware NodeRank-based caching strategy for Content-Centric Networking // 2016 International Symposium on Wireless Communication Systems (ISWCS). Poznan, 2016: 297
    [9]
    Zirak M, Yaghmaee M H, Tabbakh S R K. A distributed cache points selection scheme for reliable transport protocols with intermediate caching in Wireless Sensor Networks // 16th International Conference on Advanced Communication Technology. Pyeongchang, 2014: 705
    [10]
    Al Ridhawi I, Al Ridhawi Y. A cache-node selection mechanism for data replication and service composition within cloud-based systems // 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN). Milan, 2017: 726
    [11]
    Cui L Z, Dong L Y, Fu X H, et al. A video recommendation algorithm based on the combination of video content and social network. Concurrency Comput:Pract. Exper, 2017, 29(14): e3900 doi: 10.1002/cpe.3900
    [12]
    Qiu L, Cao G H. Cache increases the capacity of wireless networks // IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications. San Francisco, 2016: 1
    [13]
    Harper F M, Konstan J A. The movielens datasets: History and context. ACM Trans Interactive Intell Syst, 2016, 5(4): 19
    [14]
    Bastug E, Bennis M, Debbah M. Living on the edge: The role of proactive caching in 5G wireless networks. IEEE Commun Mag, 2014, 52(8): 82 doi: 10.1109/MCOM.2014.6871674
    [15]
    Ahlehagh H, Dey S. Video-aware scheduling and caching in the radio access network. IEEE/ACM Trans Networking, 2014, 22(5): 1444 doi: 10.1109/TNET.2013.2294111
    [16]
    Blaszczyszyn B, Giovanidis A. Optimal geographic caching in cellular networks // 2015 IEEE International Conference on Communications (ICC). London, 2015: 3358
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)

    Article views (1303) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频