<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 5
May  2020
Turn off MathJax
Article Contents
ZHANG Hao, LI Hai-li, GAO Qing, CHEN Cheng. Safety analysis of specialty-steel slag used as rubber functional filler[J]. Chinese Journal of Engineering, 2020, 42(5): 628-634. doi: 10.13374/j.issn2095-9389.2019.07.09.001
Citation: ZHANG Hao, LI Hai-li, GAO Qing, CHEN Cheng. Safety analysis of specialty-steel slag used as rubber functional filler[J]. Chinese Journal of Engineering, 2020, 42(5): 628-634. doi: 10.13374/j.issn2095-9389.2019.07.09.001

Safety analysis of specialty-steel slag used as rubber functional filler

doi: 10.13374/j.issn2095-9389.2019.07.09.001
More Information
  • The utilization of high-value-added metallurgical solid waste, such as the use of an inexpensive specialty-steel slag as a rubber functional filler, is an important sustainable development strategy. In this study, we prepared specialty-steel slag-based rubber composites from specialty-steel slag, carbon black, an accelerator, sulfur, zinc oxide, stearic acid, and compound rubber. Then we conducted tests to determine the internal exposure index, external exposure index, stability, tensile strength, tear strength, elongation at break, shore A hardness, limiting oxygen index, burnout time, leaching concentration of heavy metals, mineral composition, particle size distribution, heat conductivity coefficient, pore structure, chemical composition, microstructure, and thermal stability of the composites. We also studied the feasibility and environmental risk associated with using specialty-steel slag as a rubber functional filler. The results show that the mineral composition of the specialty-steel slag includes Ca2SiO4, Ca3Al6Si2O16, (Fe, Mn)2SiO4, Ca3Al2(SiO4)3, Na2TiSiO5, CuMn6SiO12, Na2SiO5, Pb3Ta2O8, Pb3SiO7, and other solid metal melts. This slag also has a good particle size distribution, and its safety and stability meet the requirements of relevant national standards. When the content of the specialty-steel slag in specialty-steel slag-based rubber composites ranges between 20%–40%, these composites have a tensile strength ranging from 20.0–21.5 MPa, a tear strength of 45.2–48.6 kN·m?1, an elongation at break value of 475%–501%, a shore A hardness of 63.5–65.3, a limiting oxygen index of 18.5–18.6, a burnout time of 264–292 s, and a heat conductivity coefficient of 0.15–0.17 W·m?1·K?1. The main heavy-metal oxides in the specialty-steel slag are identified as Cr2O3, PbO, and CuO, which mainly exist as stable solid metals. In addition, the leaching concentration of the heavy metals, such as Cu, Zn, Cd, Pb, Cr, Ba, Ni, and As, from the specialty-steel slag-based rubber composites is much lower than the limit value of the hazardous-waste identification standards. Therefore, specialty-steel slag is safe and feasible for use as a rubber functional filler.

     

  • loading
  • [1]
    劉天成. 鋼渣高效活化及在綠色建材中的應用[學位論文]. 長沙: 中南大學, 2008

    Liu T C. The Highly Effective Technology to Active Steel Slag and Its Application in Green Construct Materials [Dissertation]. Changsha: Central South University, 2008
    [2]
    張朝暉, 廖杰龍, 巨建濤, 等. 鋼渣處理工藝與國內外鋼渣利用技術. 鋼鐵研究學報, 2013, 25(7):1

    Zhang Z H, Liao J L, Ju J T, et al. Treatment process and utilization technology of steel slag in China and Abroad. J Iron Steel Res, 2013, 25(7): 1
    [3]
    Murri A N, Rickard W D A, Bignozzi M C, et al. High temperature behaviour of ambient cured alkali-activated materials based on ladle slag. Cem Concr Res, 2013, 43: 51 doi: 10.1016/j.cemconres.2012.09.011
    [4]
    Maertens C, Dubois P, Jerome R, et al. Synthesis and polarized light-induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups. J Polym Sci Part B Polym Phys, 2000, 38(1): 205 doi: 10.1002/(SICI)1099-0488(20000101)38:1<205::AID-POLB23>3.0.CO;2-H
    [5]
    Mykhaylyk O O, Warren N J, Parnell A J, et al. Applications of shear-induced polarized light imaging (SIPLI) technique for mechano-optical rheology of polymers and soft matter materials. J Polym Sci Part B Polym Phys, 2016, 54(21): 2151 doi: 10.1002/polb.24111
    [6]
    李再峰, 羅明艷, 蔣玉湘, 等. 用以合成高剝離型天然橡膠復合材料有機蒙脫土的制備及應用. 高分子材料科學與工程, 2017, 33(3):1

    Li Z F, Luo M Y, Jiang Y X, et al. Preparation and application of organo montmorillonite synthesizing exfoliated natural rubber composites. Polym Mater Sci Eng, 2017, 33(3): 1
    [7]
    Liu X B, Gao Y, Bian L N, et al. Influence of ultrafine full-vulcanized styrene-butadiene powdered rubber on dynamic mechanical properties of natural rubber/butadiene rubber and styrene- butadiene rubber/butadiene rubber blends. Polym Bull, 2015, 72(8): 2001 doi: 10.1007/s00289-015-1385-5
    [8]
    Dmowska-Jasek P, Rzymski W M, Koscista E, et al. A new method of styrene-butadiene rubber curing using in situ generated Lewis acids. Polimery, 2015, 61(11-12): 742
    [9]
    Liu X B, Gao Y, Bian L N, et al. Preparation and characterization of natural rubber/ultrafine full-vulcanized powdered styrene-butadiene rubber blends. Polym Bull, 2014, 71(8): 2023 doi: 10.1007/s00289-014-1169-3
    [10]
    Yu P, He H, Jiang C, et al. Reinforcing styrene butadiene rubber with lignin-novolac epoxy resin networks. Express Polym Lett, 2015, 9(1): 36 doi: 10.3144/expresspolymlett.2015.5
    [11]
    Custodio J, Broughton J, Cruz H. A review of factors influencing the durability of structural bonded timber joints. Int J Adhes Adhes, 2009, 29(2): 173 doi: 10.1016/j.ijadhadh.2008.03.002
    [12]
    Ashori A, Nourbakhsh A, Karegarfard A. Properties of medium density fiberboard based on bagasse fibers. J Compos Mater, 2009, 43(18): 1927 doi: 10.1177/0021998309341099
    [13]
    何凡, 李文朋, 游建華, 等. 液體天然橡膠對濕法混煉制備白炭黑/天然橡膠復合材料界面相互作用的影響. 復合材料學報, 2018, 35(1):185

    He F, Li W P, You J H, et al. Effect of liquid natural rubber on interfacial interactions of SiO2/NR composites prepared by wet mixing method. Acta Mater Compos Sin, 2018, 35(1): 185
    [14]
    王娜, 于芳, 王升, 等. 籠狀季戊四醇磷酸酯-可膨脹石墨協同阻燃天然橡膠. 復合材料學報, 2018, 35(11):2966

    Wang N, Yu F, Wang S, et al. Caged pentaerythritol phosphate-expandable graphite synergistic flame retardant natural rubber. Acta Mater Compos Sin, 2018, 35(11): 2966
    [15]
    張浩, 張欣雨. 改性多孔鋼渣/橡膠復合材料的制備及其性能. 工程科學學報, 2019, 41(1):88

    Zhang H, Zhang X Y. Preparation of modified porous steel slag/rubber composite materials and its properties. Chin J Eng, 2019, 41(1): 88
    [16]
    張浩, 黃新杰, 宗志芳, 等. 基于吸附性能的生物質基多孔活性炭制備方案的響應面法優化. 材料工程, 2017, 45(6):67 doi: 10.11868/j.issn.1001-4381.2016.000979

    Zhang H, Huang X J, Zong Z F, et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property. J Mater Eng, 2017, 45(6): 67 doi: 10.11868/j.issn.1001-4381.2016.000979
    [17]
    尚建麗, 張浩, 熊磊, 等. 基于均勻設計優化制備癸酸-棕櫚酸/SiO2復合相變材料. 材料工程, 2015, 43(9):94 doi: 10.11868/j.issn.1001-4381.2015.09.015

    Shang J L, Zhang H, Xiong L, et al. Optimized preparation of decanoic-palmitic acid/SiO2 composite phase change materials based on uniform design. J Mater Eng, 2015, 43(9): 94 doi: 10.11868/j.issn.1001-4381.2015.09.015
    [18]
    陳華, 李輝. 特殊鋼尾渣粉在泡沫混凝土制備中的作用機理. 建筑材料學報, 2019, 22(3):446 doi: 10.3969/j.issn.1007-9629.2019.03.017

    Chen H, Li H. Action mechanism of special steel tailing powder in preparation for foam concrete. J Build Mater, 2019, 22(3): 446 doi: 10.3969/j.issn.1007-9629.2019.03.017
    [19]
    陳華, 李輝, 董朔, 等. 不同處理工藝鋼渣的X射線衍射和X射線熒光光譜分析及其活性指數預測模型. 光譜學與光譜分析, 2017, 37(8):2590

    Chen H, Li H, Dong S, et al. X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis of steel slags in different treatment process and active index prediction model. Spectrosc Spect Anal, 2017, 37(8): 2590
    [20]
    許碩, 武偉紅, 程路瑤, 等. 蒲絨活性炭負載Fe2O3的制備及其在軟質聚氯乙烯中的阻燃應用. 復合材料學報, 2018, 35(7):1745

    Xu S, Wu W H, Cheng L Y, et al. Preparation of cattail activated carbon supported Fe2O3 and its flame retardant application in flexible polyvinyl chloride. Acta Mater Compos Sin, 2018, 35(7): 1745
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article views (1407) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频