Citation: | WANG Tai, AO San-san, WEI Qi, CAI Yang-chuan, ZENG Li, LUO Zhen. Improvement of process window for medium and thicker plates welded by K-TIG[J]. Chinese Journal of Engineering, 2020, 42(6): 763-768. doi: 10.13374/j.issn2095-9389.2019.07.08.010 |
[1] |
回麗, 劉思奇, 周松, 等. 載荷方向和焊縫余高對氬弧焊縫疲勞性能的影響. 材料工程, 2018, 46(2):122 doi: 10.11868/j.issn.1001-4381.2016.001177
Hui L, Liu S Q, Zhou S, et al. Influence of loading direction and weld reinforcement on fatigue performance of TIG weld seam. J Mater Eng, 2018, 46(2): 122 doi: 10.11868/j.issn.1001-4381.2016.001177
|
[2] |
Dhib Z, Guermazi N, Gaspérini M, et al. Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: microstructure and mechanical properties before and after welding. Mater Sci Eng A, 2016, 656: 130 doi: 10.1016/j.msea.2015.12.088
|
[3] |
Saha M K, Hazra R, Mondal A, et al. Effect of heat input on geometry of austenitic stainless steel weld bead on low carbon steel. J Inst Eng (India)Ser C, 2019, 100(4): 607 doi: 10.1007/s40032-018-0461-7
|
[4] |
黃治軍, 劉吉斌, 繆凱, 等. 中等厚度板埋弧焊焊縫研究. 電焊機, 2010, 40(7):49 doi: 10.3969/j.issn.1001-2303.2010.07.011
Huang Z J, Liu J B, Miao K, et al. Study on the strength of medium steel plate welding. Electr Weld Machine, 2010, 40(7): 49 doi: 10.3969/j.issn.1001-2303.2010.07.011
|
[5] |
Biswas P, Mandal N R, Saravanan M, et al. Experimental study on square-butt single-pass single-side submerged arc welding of low-carbon microalloyed steel. J Ship Prod Des, 2009, 25(2): 109
|
[6] |
殷榮幸. 20Mn23Al無磁鋼與Q235低碳鋼的埋弧焊焊接工藝. 熱加工工藝, 2011, 40(19):156 doi: 10.3969/j.issn.1001-3814.2011.19.052
Yin R X. Study on submerged arc welding process for 20Mn23Al No magnetic steel and Q235 low carbon steel. Hot Working Technol, 2011, 40(19): 156 doi: 10.3969/j.issn.1001-3814.2011.19.052
|
[7] |
周水亮, 陶軍, 郭德倫. TC21細晶鈦合金TIG焊接接頭組織及力學性能研究. 航空材料學報, 2009, 29(6):53 doi: 10.3969/j.issn.1005-5053.2009.6.011
Zhou S L, Tao J, Guo D L. Study on microstructure and mechanical properties of fine grain TC21 alloy in TIG. J Aeron Mater, 2009, 29(6): 53 doi: 10.3969/j.issn.1005-5053.2009.6.011
|
[8] |
Rosellini C, Jarvis L. The keyhole TIG welding process: a valid alternative for valuable metal joints. Weld Int, 2009, 23(8): 616 doi: 10.1080/09507110802543237
|
[9] |
Fei Z Y, Pan Z X, Cuiuri D, et al. Investigation into the viability of K-TIG for joining armour grade quenched and tempered steel. J Manuf Processes, 2018, 32: 482 doi: 10.1016/j.jmapro.2018.03.014
|
[10] |
Feng Y Q, Luo Z, Liu Z M, et al. Keyhole gas tungsten arc welding of AISI 316L stainless steel. Mater Des, 2015, 85: 24 doi: 10.1016/j.matdes.2015.07.011
|
[11] |
Fan W F, Ao S S, Huang Y F, et al. Water cooling keyhole gas tungsten arc welding of HSLA steel. Int J Adv Manuf Technol, 2017, 92(5-8): 2207 doi: 10.1007/s00170-017-0234-0
|
[12] |
Huang Y F, Luo Z, Lei Y C, et al. Dissimilar joining of AISI 304/Q235 steels in keyhole tungsten inert gas welding process. Int J Adv Manuf Technol, 2018, 96(9-12): 4041 doi: 10.1007/s00170-018-1791-6
|
[13] |
Xie Y, Cai Y C, Zhang X, et al. Characterization of keyhole gas tungsten arc welded AISI 430 steel and joint performance optimization. Int J Adv Manuf Technol, 2018, 99(1-4): 347 doi: 10.1007/s00170-018-2257-6
|
[14] |
Olivares E A G, e Silva R H G, Dutra J C. Study of keyhole TIG welding by comparative analysis of two high-productivity torches for joining medium-thickness carbon steel plates. Weld Int, 2017, 31(5): 337 doi: 10.1080/09507116.2016.1218603
|
[15] |
Liang J D, Guo S M, Wahab M A. Localized surface modification on 1018 low-carbon steel by electrolytic plasma process and its impact on corrosion behavior. J Mater Eng Perform, 2014, 23(12): 4187 doi: 10.1007/s11665-014-1165-7
|
[16] |
張瑞華, 樊丁. 低碳鋼A-TIG焊活性劑的焊接性. 焊接學報, 2003, 24(1):85 doi: 10.3321/j.issn:0253-360X.2003.01.022
Zhang R H, Fan D. Weldability of activating flux in A-TIG welding for mild steel. Trans China Weld Inst, 2003, 24(1): 85 doi: 10.3321/j.issn:0253-360X.2003.01.022
|