<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
WANG Tai, AO San-san, WEI Qi, CAI Yang-chuan, ZENG Li, LUO Zhen. Improvement of process window for medium and thicker plates welded by K-TIG[J]. Chinese Journal of Engineering, 2020, 42(6): 763-768. doi: 10.13374/j.issn2095-9389.2019.07.08.010
Citation: WANG Tai, AO San-san, WEI Qi, CAI Yang-chuan, ZENG Li, LUO Zhen. Improvement of process window for medium and thicker plates welded by K-TIG[J]. Chinese Journal of Engineering, 2020, 42(6): 763-768. doi: 10.13374/j.issn2095-9389.2019.07.08.010

Improvement of process window for medium and thicker plates welded by K-TIG

doi: 10.13374/j.issn2095-9389.2019.07.08.010
More Information
  • Corresponding author: E-mail: ao33@tju.edu.cn
  • Received Date: 2019-07-08
  • Publish Date: 2020-06-01
  • The welding of 8-mm thick Q235 low-carbon steel plates by keyhole tungsten inter gas welding (K-TIG), a deep penetration argon arc welding technique with tungsten electrode, is associated with many problems, including an unstable welding process and a small welding current window. To solve these prominent problems, the method of adding shielding flux on the back of the welding workpieces was proposed for the first time in this paper. This method can improve the stability of the welding process. The butt welding method was used to achieve the result of single-sided welding and double-sided forming without adding welding wire or prefabricating groove during the welding process. The results show that direct current (DC) in the range of 430–480 A is successfully used to weld the 8-mm thick Q235 low-carbon steel. The welding current window is expanded to 50 A, and the welding process stability is significantly improved. After expanding the welding current window, the microstructures and properties of welded joints obtained under different welding currents were systematically studied. The results show that the distribution of microstructures and the mechanical properties of the welded joints under different welding currents present the same states. The microstructures of the weld zone are composed of ferrite + pearlite + widmanstatten structure; the microstructures of the fusion zone are composed of Widmanstatten structure; the structures of the heat-affected zones are composed of ferrite + a small amount of pearlite. In addition, with the increase in the welding current, the fusion width of the back of the workpiece increased slightly. In the welding joint, the hardness value of the fusion zone is the highest, followed by the weld zone, and the heat-affected zone. The base material has the least hardness, and the final tensile fracture position of the welded joint is in the heat affected zone.

     

  • loading
  • [1]
    回麗, 劉思奇, 周松, 等. 載荷方向和焊縫余高對氬弧焊縫疲勞性能的影響. 材料工程, 2018, 46(2):122 doi: 10.11868/j.issn.1001-4381.2016.001177

    Hui L, Liu S Q, Zhou S, et al. Influence of loading direction and weld reinforcement on fatigue performance of TIG weld seam. J Mater Eng, 2018, 46(2): 122 doi: 10.11868/j.issn.1001-4381.2016.001177
    [2]
    Dhib Z, Guermazi N, Gaspérini M, et al. Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: microstructure and mechanical properties before and after welding. Mater Sci Eng A, 2016, 656: 130 doi: 10.1016/j.msea.2015.12.088
    [3]
    Saha M K, Hazra R, Mondal A, et al. Effect of heat input on geometry of austenitic stainless steel weld bead on low carbon steel. J Inst Eng (India)Ser C, 2019, 100(4): 607 doi: 10.1007/s40032-018-0461-7
    [4]
    黃治軍, 劉吉斌, 繆凱, 等. 中等厚度板埋弧焊焊縫研究. 電焊機, 2010, 40(7):49 doi: 10.3969/j.issn.1001-2303.2010.07.011

    Huang Z J, Liu J B, Miao K, et al. Study on the strength of medium steel plate welding. Electr Weld Machine, 2010, 40(7): 49 doi: 10.3969/j.issn.1001-2303.2010.07.011
    [5]
    Biswas P, Mandal N R, Saravanan M, et al. Experimental study on square-butt single-pass single-side submerged arc welding of low-carbon microalloyed steel. J Ship Prod Des, 2009, 25(2): 109
    [6]
    殷榮幸. 20Mn23Al無磁鋼與Q235低碳鋼的埋弧焊焊接工藝. 熱加工工藝, 2011, 40(19):156 doi: 10.3969/j.issn.1001-3814.2011.19.052

    Yin R X. Study on submerged arc welding process for 20Mn23Al No magnetic steel and Q235 low carbon steel. Hot Working Technol, 2011, 40(19): 156 doi: 10.3969/j.issn.1001-3814.2011.19.052
    [7]
    周水亮, 陶軍, 郭德倫. TC21細晶鈦合金TIG焊接接頭組織及力學性能研究. 航空材料學報, 2009, 29(6):53 doi: 10.3969/j.issn.1005-5053.2009.6.011

    Zhou S L, Tao J, Guo D L. Study on microstructure and mechanical properties of fine grain TC21 alloy in TIG. J Aeron Mater, 2009, 29(6): 53 doi: 10.3969/j.issn.1005-5053.2009.6.011
    [8]
    Rosellini C, Jarvis L. The keyhole TIG welding process: a valid alternative for valuable metal joints. Weld Int, 2009, 23(8): 616 doi: 10.1080/09507110802543237
    [9]
    Fei Z Y, Pan Z X, Cuiuri D, et al. Investigation into the viability of K-TIG for joining armour grade quenched and tempered steel. J Manuf Processes, 2018, 32: 482 doi: 10.1016/j.jmapro.2018.03.014
    [10]
    Feng Y Q, Luo Z, Liu Z M, et al. Keyhole gas tungsten arc welding of AISI 316L stainless steel. Mater Des, 2015, 85: 24 doi: 10.1016/j.matdes.2015.07.011
    [11]
    Fan W F, Ao S S, Huang Y F, et al. Water cooling keyhole gas tungsten arc welding of HSLA steel. Int J Adv Manuf Technol, 2017, 92(5-8): 2207 doi: 10.1007/s00170-017-0234-0
    [12]
    Huang Y F, Luo Z, Lei Y C, et al. Dissimilar joining of AISI 304/Q235 steels in keyhole tungsten inert gas welding process. Int J Adv Manuf Technol, 2018, 96(9-12): 4041 doi: 10.1007/s00170-018-1791-6
    [13]
    Xie Y, Cai Y C, Zhang X, et al. Characterization of keyhole gas tungsten arc welded AISI 430 steel and joint performance optimization. Int J Adv Manuf Technol, 2018, 99(1-4): 347 doi: 10.1007/s00170-018-2257-6
    [14]
    Olivares E A G, e Silva R H G, Dutra J C. Study of keyhole TIG welding by comparative analysis of two high-productivity torches for joining medium-thickness carbon steel plates. Weld Int, 2017, 31(5): 337 doi: 10.1080/09507116.2016.1218603
    [15]
    Liang J D, Guo S M, Wahab M A. Localized surface modification on 1018 low-carbon steel by electrolytic plasma process and its impact on corrosion behavior. J Mater Eng Perform, 2014, 23(12): 4187 doi: 10.1007/s11665-014-1165-7
    [16]
    張瑞華, 樊丁. 低碳鋼A-TIG焊活性劑的焊接性. 焊接學報, 2003, 24(1):85 doi: 10.3321/j.issn:0253-360X.2003.01.022

    Zhang R H, Fan D. Weldability of activating flux in A-TIG welding for mild steel. Trans China Weld Inst, 2003, 24(1): 85 doi: 10.3321/j.issn:0253-360X.2003.01.022
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (1297) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频