<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
LIU Ping-ping, HU Wen, SONG Jian, JIA Yu-mei, ZHAN Qian, WAN Fa-rong. Effect of high dose helium ion irradiation on the surface microstructure of a new neutron multiplying Be?W alloy[J]. Chinese Journal of Engineering, 2020, 42(1): 128-133. doi: 10.13374/j.issn2095-9389.2019.07.08.008
Citation: LIU Ping-ping, HU Wen, SONG Jian, JIA Yu-mei, ZHAN Qian, WAN Fa-rong. Effect of high dose helium ion irradiation on the surface microstructure of a new neutron multiplying Be?W alloy[J]. Chinese Journal of Engineering, 2020, 42(1): 128-133. doi: 10.13374/j.issn2095-9389.2019.07.08.008

Effect of high dose helium ion irradiation on the surface microstructure of a new neutron multiplying Be?W alloy

doi: 10.13374/j.issn2095-9389.2019.07.08.008
More Information
  • Corresponding author: E-mail: ppliu@ustb.edu.cn
  • Received Date: 2019-07-08
  • Publish Date: 2020-01-01
  • A neutron multiplier must be employed to obtain the proper tritium breeding rate and ensure the self-sustaining combustion of deuterium and tritium in fusion reactors, which represents a new and powerful solution for the energy problem. Several researchers have proposed the use of beryllium, an outstanding nuclear metal, as a promising solid neutron multiplier in the helium-cooled ceramic breeder (HCCB) test blanket module (TBM) of the Chinese TBM program. In this module, beryllium will be subjected to high-dose irradiation with high-energy neutrons during services in reactor to produce a large number of helium ions and significant irradiation damage resulting in extreme performance degradation. Unfortunately, the metal’s low melting point and poor irradiation swelling resistance at high temperatures limit its usage in the DEMO reactor. Thus, finding or developing a new neutron multiplier with a higher melting point and better ability to resist irradiation swelling than beryllium in advanced fusion reactors is an important undertaking. Knowledge of the characteristics of the microstructural changes of beryllium and/or beryllium alloys under irradiation is an important factor contributing to the understanding of the degradation of their physical-mechanical properties. In this study, a new beryllium tungsten alloy (Be12W) with a high melting point was proposed and fabricated by hot isostatic pressing. The phase composition and surface structure of Be12W were then analyzed by X-ray and scanning electron microscopy. The Be12W alloy was irradiated with 30 keV He+ ions at room temperature at a dose of 1×1018 ions·cm?2 and ion fluence of 0.2 μA. Microstructural changes and the types of helium gas-filled blisters that developed on the surface of the alloy after irradiation were subsequently investigated. Blisters with an average size of 0.8 μm and in-plane number density of 2.4×107 cm?2 initially develops, followed by blisters with an average size of about 80 nm and in-plane number density of 1.28×108 cm?2.

     

  • loading
  • [1]
    Freidberg Jeffrey. 等離子體物理與聚變能. 北京: 科學出版社, 2010

    Freidberg J. Plasma Physics and Fusion Energy. Beijing: Science Press, 2010
    [2]
    王乃彥. 聚變能及其未來. 北京: 清華大學出版社, 2001

    Wang N Y. Fusion Energy and Its Future. Beijing: Tsinghua University Press, 2001
    [3]
    Rebut P H. ITER: the first experimental fusion reactor. Fusion Eng Des, 1995, 30(1-2): 85 doi: 10.1016/0920-3796(94)00403-T
    [4]
    Barabash V, Peacock A, Fabritsiev S, et al. Materials challenges for ITER–current status and future activities. J Nucl Mater, 2007, 367-370: 21 doi: 10.1016/j.jnucmat.2007.03.017
    [5]
    郝嘉琨. 聚變堆材料. 北京: 化學工業出版社, 2007

    Hao J K. Fusion Reactor Materials. Beijing: Chemical Industry Press, 2007
    [6]
    郁金南. 材料輻照效應. 北京: 化學工業出版社, 2007

    Yu J N. Irradiation Effect of Materials. Beijing: Chemical Industry Press, 2007
    [7]
    萬發榮. 金屬材料的輻照損傷. 北京: 科學出版社, 1993

    Wan F R. Irradiation Damage of Metal Materials. Beijing: Science Press, 1993
    [8]
    Raffray A R, Akiba M, Chuyanov V, et al. Breeding blanket concepts for fusion and materials requirements. J Nucl Mater, 2002, 307-311: 21 doi: 10.1016/S0022-3115(02)01174-1
    [9]
    Vladimirov P, Bachurin D, Borodin V, et al. Current status of beryllium materials for fusion blanket applications. Fusion Sci Technol, 2014, 66(1): 28 doi: 10.13182/FST13-776
    [10]
    Giancarli L M, Abdou M, Campbell D J, et al. Overview of the ITER TBM Program. Fusion Eng Des, 2012, 87(5-6): 395 doi: 10.1016/j.fusengdes.2011.11.005
    [11]
    Feng K M, Pan C H, Zhang G S, et al. Progress on design and R&D for helium-cooled ceramic breeder TBM in China. Fusion Eng Des, 2012, 87(7-8): 1138 doi: 10.1016/j.fusengdes.2012.02.098
    [12]
    Kawamura H, Takahashi H, Yoshida N, et al. Application of beryllium intermetallic compounds to neutron multiplier of fusion blanket. Fusion Eng Des, 2002, 61-62: 391 doi: 10.1016/S0920-3796(02)00106-0
    [13]
    Kurinskiy P, Moeslang A, Chakin V, et al. Characteristics of microstructure, swelling and mechanical behaviour of titanium beryllide samples after high-dose neutron irradiation at 740 and 873 K. Fusion Eng Des, 2013, 88(9-10): 2198 doi: 10.1016/j.fusengdes.2013.05.084
    [14]
    Nakamichi M, Kim J H. Homogenization treatment to stabilize the compositional structure of beryllide pebbles. J Nucl Mater, 2013, 440(1-3): 530 doi: 10.1016/j.jnucmat.2013.02.070
    [15]
    Nakamichi M, Kim J H. Fabrication and hydrogen generation reaction with water vapor of prototypic pebbles of binary beryllides as advanced neutron multiplier. Fusion Eng Des, 2015, 98-99: 1838 doi: 10.1016/j.fusengdes.2015.04.026
    [16]
    Kim J H, Nakamichi M. Optimization of synthesis conditions for plasma-sintered beryllium–titanium intermetallic compounds. J Alloys Compd, 2013, 577: 90 doi: 10.1016/j.jallcom.2013.04.185
    [17]
    Nakamichi M, Kim J H, Munakata K, et al. Preliminary characterization of plasma-sintered beryllides as advanced neutron multipliers. J Nucl Mater, 2013, 442(1-3, Suppl 1): S465 doi: 10.1016/j.jnucmat.2012.11.011
    [18]
    Liu P P, Zhan Q, Fu Z Y, et al. Surface and internal microstructure damage of He–ion–irradiated CLAM steel studied by cross-sectional transmission electron microscopy. J Alloys Compd, 2015, 649: 859 doi: 10.1016/j.jallcom.2015.07.177
    [19]
    Zhang C H, Chen K Q, Wang Y S, et al. Formation of bubbles in helium implanted 316L stainless steel at temperatures between 25 and 550 °C. J Nucl Mater, 1997, 245(2-3): 210 doi: 10.1016/S0022-3115(97)00007-X
    [20]
    張崇宏, 陳克勤, 王引書, 等. 2.5 MeV的He+離子輻照316L不銹鋼中氦泡的形核與生長研究. 物理學報, 1997, 46(9):1774 doi: 10.3321/j.issn:1000-3290.1997.09.017

    Zhang C H, Chen K Q, Wang Y S, et al. The formation of helium bubbles in 316L stainless steel irradiated with 2.5 MeV He+ ions. Acta Phys Sin, 1997, 46(9): 1774 doi: 10.3321/j.issn:1000-3290.1997.09.017
    [21]
    Trinkaus H. Modeling of helium effects in metals: high temperature embrittlement. J Nucl Mater, 1985, 133: 105
    [22]
    Trinkaus H. On the modeling of the high-temperature embrittlement of metals containing helium. J Nucl Mater, 1983, 118(1): 39 doi: 10.1016/0022-3115(83)90177-0
    [23]
    Li X C, Liu Y N, Yu Y, et al. Helium defects interactions and mechanism of helium bubble growth in tungsten: a molecular dynamics simulation. J Nucl Mater, 2014, 451(1-3): 356 doi: 10.1016/j.jnucmat.2014.04.022
    [24]
    Trinkaus H, Singh B N. Helium accumulation in metals during irradiation: where do we stand? J Nucl Mater, 2003, 323(2-3): 229 doi: 10.1016/j.jnucmat.2003.09.001
    [25]
    Fu C C, Willaime F. Ab initio study of helium in α-Fe: dissolution, migration, and clustering with vacancies. Phys Rev B, 2005, 72(6): 064117 doi: 10.1103/PhysRevB.72.064117
    [26]
    Evans J H. An interbubble fracture mechanism of blister formation on helium-irradiated metals. J Nucl Mater, 1977, 68(2): 129 doi: 10.1016/0022-3115(77)90232-X
    [27]
    Gusev V M, Guseva M I, Martynenko Y V, et al. Helium blistering at high irradiation doses. J Nucl Mater, 1979, 85-86: 1101 doi: 10.1016/0022-3115(79)90407-0
    [28]
    Liu Y Z, Li B S, Zhang L. High-temperature annealing induced He bubble evolution in low energy He ion implanted 6H–SiC. Chin Phys Lett, 2017, 34(5): 052801 doi: 10.1088/0256-307X/34/5/052801
    [29]
    Daghbouj N, Li B S, Karlik M, et al. 6H–SiC blistering efficiency as a function of the hydrogen implantation fluence. Appl Surf Sci, 2019, 466: 141 doi: 10.1016/j.apsusc.2018.10.005
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)

    Article views (1240) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频