Citation: | WANG Jun, LEI Yu, LIU Xin-hua, XIE Guo-liang, JIANG Yan-qing, ZHANG Shuai. Microstructure and properties of Cu–Al-laminated composites fabricated via formation of a horizontal continuous casting composite[J]. Chinese Journal of Engineering, 2020, 42(2): 216-224. doi: 10.13374/j.issn2095-9389.2019.07.08.005 |
[1] |
劉騰, 劉平, 王渠東. 銅鋁雙金屬復合材料的研究進展. 材料導報, 2013, 27(10):1 doi: 10.3969/j.issn.1005-023X.2013.10.001
Liu T, Liu P, Wang Q D. Research progress on copper/aluminum bimetal composite. Mater Rev, 2013, 27(10): 1 doi: 10.3969/j.issn.1005-023X.2013.10.001
|
[2] |
田捍衛, 王愛琴, 劉帥洋, 等. 銅鋁層狀復合材料的研究進展. 材料科學與工程學報, 2019, 37(1):167
Tian H W, Wang A Q, Liu S Y, et al. Research progress on copper?aluminum laminated composites. J Mater Sci Eng, 2019, 37(1): 167
|
[3] |
劉帥洋, 王愛琴, 呂世敬, 等. 銅鋁層狀復合材料界面特性及深加工研究進展. 材料導報, 2018, 32(3):828
Liu S Y, Wang A Q, Lü S J, et al. Interfacial properties and further processing of Cu/Al laminated composite: A review. Mater Rev, 2018, 32(3): 828
|
[4] |
吳霖, 吳鐘平, 孟春旅, 等. 一種新型低壓接戶線銅鋁過渡金具的應用研究. 廣東科技, 2014, 1(2):53 doi: 10.3969/j.issn.1006-5423.2014.02.028
Wu L, Wu Z P, Meng C L, et al. Study on application of a new type of copper?aluminum transition fittings for low voltage wiring. Guangdong Sci Technol, 2014, 1(2): 53 doi: 10.3969/j.issn.1006-5423.2014.02.028
|
[5] |
Athar M M H, Tolaminejad B. Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding. Mater Des, 2015, 86: 516 doi: 10.1016/j.matdes.2015.07.114
|
[6] |
陳勇富, 陳崗, 熊少非. 銅?鋁爆炸焊接?軋制復合板及其應用. 輕合金加工技術, 1996, 24(11):37
Chen F Y, Chen G, Xiong S F. Explosive welding-rolling composite plate of copper?aluminum and its application. Light Alloy Fabrication Technol, 1996, 24(11): 37
|
[7] |
陳明, 萬小勇, 董亭義, 等. 高純鋁與銅爆炸焊接性能分析. 有色金屬(冶煉部分), 2014(5):56
Chen M, Wan X Y, Dong T Y, et al. Performance analysis on interlayer of high purity aluminum and copper bonded by explosive welding. Nonferrous Met (Extr Metall)
|
[8] |
Wang T, Li S, Ren Z K, et al. A novel approach for preparing Cu/Al laminated composite based on corrugated roll. Meter Lett, 2019, 234: 79 doi: 10.1016/j.matlet.2018.09.060
|
[9] |
Li L, Nagai K, Yin F X. Progress in cold roll bonding of metals. Sci Technol Adv Mater, 2008, 9(2): 23001 doi: 10.1088/1468-6996/9/2/023001
|
[10] |
Li X B, Zu G Y, Wang P. Microstructural development and its effects on mechanical properties of Al/Cu laminated composite. Trans Nonferrous Met Soc China, 2015, 25(1): 36 doi: 10.1016/S1003-6326(15)63576-2
|
[11] |
Jiang Y, Peng D S, Lu D, et al. Analysis of clad sheet bonding by cold rolling. J Mater Process Technol, 2000, 105(1-2): 32 doi: 10.1016/S0924-0136(00)00553-7
|
[12] |
胡捷. 銅包鋁復合線材靜液擠壓加工工藝研究. 新技術新工藝, 2001(9):27 doi: 10.3969/j.issn.1003-5311.2001.09.014
Hu J. The study to produce copper fold aluminium composite wire by hydraulic extrusion. New Technol New Process, 2001(9): 27 doi: 10.3969/j.issn.1003-5311.2001.09.014
|
[13] |
婁敏軒, 劉新華, 姜雁斌, 等. 銅包鋁絲材的旋鍛復合-拉拔成形與組織性能. 工程科學學報, 2018, 40(11):1358
Lou M X, Liu X H, Jiang Y B, et al. Rotary swaging-drawing formation, microstructure, and properties of copper-clad aluminium composite micro-wires. Chin J Eng, 2018, 40(11): 1358
|
[14] |
Liu S Y, Wang A Q, Tian H W, et al. The synergetic tensile deformation behaviour of Cu/Al laminated composites prepared by twin-roll casting technology. Mater Res Express, 2018, 6(1): 016530 doi: 10.1088/2053-1591/aae630
|
[15] |
路王珂, 謝敬佩, 王愛琴, 等. 退火溫度對銅鋁鑄軋復合板界面組織和力學性能的影響. 機械工程材料, 2014, 38(3):14
Lu W K, Xie J P, Wang A Q, et al. Effects of annealing temperature on interfacial microstructure and mechanical properties of Cu/Al roll-casted composite plate. Mater Mech Eng, 2014, 38(3): 14
|
[16] |
謝建新. 新材料加工新技術與新工藝. 北京: 冶金工業出版社, 2004
Xie J X. Advanced Processing Technologies of Materials. Beijing: Metallurgical Industry Press, 2004
|
[17] |
吳永福, 劉新華, 謝建新, 等. 矩形斷面銅包鋁復合材料的水平連鑄直接復合成形. 中國有色金屬學報, 2012, 22(9):2500
Wu Y F, Liu X H, Xie J X, et al. Copper cladding aluminum composite materials with rectangle section fabricated by horizontal core-filling continuous casting. Chin J Nonferrous Met, 2012, 22(9): 2500
|
[18] |
Su Y J, Liu X H, Huang H Y, et al. Effects of processing parameters on the fabrication of copper cladding aluminum rods by horizontal core-filling continuous casting. Metall Mater Trans B, 2011, 42(1): 104 doi: 10.1007/s11663-010-9449-2
|
[19] |
Chen S Y, Chang G W, Yue X D, et al. Solidification process and microstructure of transition layer of Cu?Al composite cast prepared by method of pouring molten aluminum. Trans Nonferrous Met Soc China, 2016, 26(8): 2247 doi: 10.1016/S1003-6326(16)64343-1
|
[20] |
吳永福, 劉新華, 謝建新. 連鑄直接成形矩形斷面銅包鋁復合材料界面及其在軋制中的變化. 中國有色金屬學報, 2013, 23(1):191
Wu Y F, Liu X H, Xie J X. Interface of copper cladding aluminum composite materials with rectangle section fabricated by horizontal core-filling continuous casting and its evolvement in rolling process. Chin J Nonferrous Met, 2013, 23(1): 191
|
[21] |
Su Y J, Liu X H, Huang H Y, et al. Interfacial microstructure and bonding strength of copper cladding aluminum rods fabricated by horizontal core-filling continuous casting. Metall Mater Trans A, 2011, 42(13): 4088 doi: 10.1007/s11661-011-0785-x
|
[22] |
Tavassoli S, Abbasi M, Tahavvori R. Controlling of IMCs layer formation sequence, bond strength and electrical resistance in Al?Cu bimetal compound casting process. Mater Des, 2016, 108: 343 doi: 10.1016/j.matdes.2016.06.076
|