<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
YANG Tao, FENG Jiao, CHEN Jun-hong, CHOU Kuo-Chih, HOU Xin-mei. Electrochemical detection of dopamine and uric acid using a titanium nitride-graphene composite sensor[J]. Chinese Journal of Engineering, 2019, 41(12): 1536-1542. doi: 10.13374/j.issn2095-9389.2019.07.04.034
Citation: YANG Tao, FENG Jiao, CHEN Jun-hong, CHOU Kuo-Chih, HOU Xin-mei. Electrochemical detection of dopamine and uric acid using a titanium nitride-graphene composite sensor[J]. Chinese Journal of Engineering, 2019, 41(12): 1536-1542. doi: 10.13374/j.issn2095-9389.2019.07.04.034

Electrochemical detection of dopamine and uric acid using a titanium nitride-graphene composite sensor

doi: 10.13374/j.issn2095-9389.2019.07.04.034
More Information
  • Dopamine (DA) and uric acid (UA) are small biological molecules involved in many important processes in the human body. Their concentrations are closely related to human health. Abnormal concentrations of these molecules lead to various diseases, such as Parkinson's and gout, so monitoring of DA and UA in blood and urine, respectively, is very meaningful in clinical analysis. Electrochemical sensor detection is a widely-used method in the field of biological analysis owing to its advantages of simple operation, high sensitivity, low cost, environmental friendliness, etc. In this paper, titanium nitride (TiN) nanomaterial with chrysanthemum morphology was synthesized by hydrothermal and reduction nitridation methods toward preparation of an effective electrochemical sensor for human testing. It was further combined with reduced graphene oxide (rGO) through the hydrothermal method to form a titanium nitride-reduced graphene oxide (TiN-rGO) composite material. The phase and morphology of the material were characterized and analyzed by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and other test methods. The results show that the TiN-rGO composite material maintaines the three-dimensional chrysanthemum-like morphology of TiN, and the transparent and wrinkled morphology of rGO. The chrysanthemum-like TiN is uniformly coated with the layered rGO. The TiN-rGO/GCE electrochemical sensor was then prepared by modifying the glassy carbon electrode (GCE) with TiN-rGO composite material for the determination DA and UA levels in the human body. Due to the synergistic effect of TiN and rGO in the composite, the constructed electrochemical sensor exhibits excellent electrochemical performance. The detection results show that the detection limits of DA and UA for the TiN-rGO/GCE electrochemical sensor are 0.11 and 0.12 μmol·L?1, respectively, and the linear ranges are 0.5?210 μmol·L?1 and 5?350 μmol·L?1, respectively. TiN-rGO/GCE electrochemical sensor also has good anti-interference, reproducibility and stability, and has been successfully applied in the detection of DA and UA in real human samples.

     

  • loading
  • [1]
    Bagheri H, Pajooheshpour N, Jamali B, et al. A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4?SnO2?Gr ternary nanocomposite. Microchem J, 2017, 131: 120 doi: 10.1016/j.microc.2016.12.006
    [2]
    Ping J F, Wu J, Wang Y X, et al. Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens Bioelectron, 2012, 34(1): 70 doi: 10.1016/j.bios.2012.01.016
    [3]
    Zhao L W, Li H J, Gao S M, et al. MgO nanobelt-modified graphene-tantalum wire electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim Acta, 2015, 168: 191 doi: 10.1016/j.electacta.2015.03.215
    [4]
    Wang H Y, Hui Q S, Xu L X, et al. Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent. Anal Chim Acta, 2003, 497(1-2): 93 doi: 10.1016/j.aca.2003.08.050
    [5]
    Wang J, Chatrathi M P, Tian B M, et al. Microfabricated electrophoresis chips for simultaneous bioassays of glucose, uric acid, ascorbic acid, and acetaminophen. Anal Chem, 2000, 72(11): 2514 doi: 10.1021/ac991489l
    [6]
    Liu X, Jiang H, Lei J P, et al. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal Chem, 2007, 79(21): 8055 doi: 10.1021/ac070927i
    [7]
    Ren X, Zhang T, Wu D, et al. Increased electrocatalyzed performance through high content potassium doped graphene matrix and aptamer tri infinite amplification labels strategy: highly sensitive for matrix metalloproteinases-2 detection. Biosens Bioelectron, 2017, 94: 694 doi: 10.1016/j.bios.2017.03.064
    [8]
    Zhou S H, Shi H Y, Feng X, et al. Design of templated nanoporous carbon electrode materials with substantial high specific surface area for simultaneous determination of biomolecules. Biosens Bioelectron, 2013, 42: 163 doi: 10.1016/j.bios.2012.10.043
    [9]
    Darmawan W, Usuki H, Rahayu I S, et al. Wear characteristics of multilayer-coated cutting tools when milling particleboard. Forest Prod J, 2010, 60(7-8): 615
    [10]
    Zahid R, Masjuki H H, Varman M, et al. Effect of lubricant formulations on the tribological performance of self-mated doped DLC contacts: a review. Tribol Lett, 2015, 58(2): 32 doi: 10.1007/s11249-015-0506-5
    [11]
    Kaskel S, Schlichte K, Kratzke T. Catalytic properties of high surface area titanium nitride materials. J Mol Catal A-Chem, 2004, 208(1-2): 291 doi: 10.1016/S1381-1169(03)00545-4
    [12]
    Choi D, Kumta P N. Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors. J Electrochem Soc, 2006, 153(12): A2298 doi: 10.1149/1.2359692
    [13]
    Cui Z M, Zu C X, Zhou W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv Mater, 2016, 28(32): 6926 doi: 10.1002/adma.201601382
    [14]
    Dong S M, Chen X, Gu L, et al. A biocompatible titanium nitride nanorods derived nanostructured electrode for biosensing and bioelectrochemical energy conversion. Biosens Bioelectron, 2011, 26(10): 4088 doi: 10.1016/j.bios.2011.03.040
    [15]
    Kong F Y, Gu S X, Wang J Y, et al. Facile green synthesis of graphene-titanium nitride hybrid nanostructure for the simultaneous determination of acetaminophen and 4-aminophenol. Sens Actuators B, 2015, 213: 397 doi: 10.1016/j.snb.2015.02.120
    [16]
    Zhu J X, Yang D, Yin Z Y, et al. Graphene and graphene-based materials for energy storage applications. Small, 2014, 10(17): 3480 doi: 10.1002/smll.201303202
    [17]
    林軒宇, 張虹, 黃碩, 等. 氧化鋅納米線陣列/泡沫石墨烯電化學檢測左旋多巴. 工程科學學報, 2016, 38(9):1306

    Lin X Y, Zhang H, Huang S, et al. Electrochemical determination of levodopa using ZnO nanowire arrays/graphene foam. Chin J Eng, 2016, 38(9): 1306
    [18]
    周龍斐, 邱紅梅, 徐美, 等. 石墨烯/二氧化錳復合材料的制備及其電化學性能. 工程科學學報, 2016, 38(9):1300

    Zhou L F, Qiu H M, Xu M, et al. Synthesis and electrochemical properties of graphene/MnO2 composites. Chin J Eng, 2016, 38(9): 1300
    [19]
    史興嶺, 戴智鑫, 徐玲利, 等. 水熱處理溫度對滲氮鈦陶瓷層性能的影響. 材料熱處理學報, 2017, 38(1):165

    Shi X L, Dai Z X, Xu L L, et al. Effects of hydrothermal treatment temperature on properties of titanium nitride coating. Trans Mater Heat Treat, 2017, 38(1): 165
    [20]
    Zhang X, Zhang B, Liu D Y, et al. One-pot synthesis of ternary alloy CuFePt nanoparticles anchored on reduced graphene oxide and their enhanced electrocatalytic activity for both methanol and formic acid oxidation reactions. Electrochim Acta, 2015, 177: 93 doi: 10.1016/j.electacta.2015.02.046
    [21]
    Kong F Y, Chen T T, Wang J Y, et al. UV-assisted synthesis of tetrapods-like titanium nitride-reduced graphene oxide nanohybrids for electrochemical determination of chloramphenicol. Sens Actuators B, 2016, 225: 298 doi: 10.1016/j.snb.2015.11.041
    [22]
    Wang C Q, Du J, Wang H W, et al. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens Actuators B, 2014, 204: 302 doi: 10.1016/j.snb.2014.07.077
    [23]
    Liu X F, Zhang L, Wei S P, et al. Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine. Biosens Bioelectron, 2014, 57: 232 doi: 10.1016/j.bios.2014.02.017
    [24]
    Wang S Y, Zhang W, Zhong X, et al. Simultaneous determination of dopamine, ascorbic acid and uric acid using a multi-walled carbon nanotube and reduced graphene oxide hybrid functionalized by PAMAM and Au nanoparticles. Anal Methods, 2015, 7(4): 1471 doi: 10.1039/C4AY02086C
    [25]
    Zhang X, Zhang Y C, Ma L X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens Actuators B, 2016, 227: 488 doi: 10.1016/j.snb.2015.12.073
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (1162) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频