Citation: | LI Lian-bing, JI Liang, ZHU Ya-zun, WANG Zhi-jiang, JI Lei. Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack[J]. Chinese Journal of Engineering, 2020, 42(6): 796-802. doi: 10.13374/j.issn2095-9389.2019.07.03.003 |
[1] |
Liu D T, Xie W, Liao H T, et al. An integrated probabilistic approach to lithium-ion battery remaining useful life estimation. IEEE Trans Instrum Meas, 2015, 64(3): 660 doi: 10.1109/TIM.2014.2348613
|
[2] |
Gu R, Malysz P, Yang H, et al. On the suitability of electrochemical-based modeling for lithium-ion batteries. IEEE Trans Transp Electrific, 2016, 2(4): 417 doi: 10.1109/TTE.2016.2571778
|
[3] |
楊帆, 喬艷龍, 甘德剛, 等. 不同充電模式對鋰離子電池極化特性影響. 電工技術學報, 2017, 32(12):171
Yang F, Qiao Y L, Gan D G, et, al. Lithium-ion battery polarization characteristics at different charging modes. Trans China Electrotech Soc, 2017, 32(12): 171
|
[4] |
孫丙香, 姜久春, 韓智強, 等. 基于不同衰退路徑下的鋰離子動力電池低溫應力差異性. 電工技術學報, 2016, 31(10):159 doi: 10.3969/j.issn.1000-6753.2016.10.019
Sun B X, Jiang J C, Han Z Q, e t, a l. The lithium-ion battery low temperature stress based on different degradation paths. Trans China Electrotech Soc, 2016, 31(10): 159 doi: 10.3969/j.issn.1000-6753.2016.10.019
|
[5] |
Yan W Z, Zhang B, Zhao G Q, et al. A battery management system with a Lebesgue-sampling-based extended Kalman filter. IEEE Trans Ind Electron, 2019, 66(4): 3227 doi: 10.1109/TIE.2018.2842782
|
[6] |
Wei J W, Dong G Z, Chen Z H. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression. IEEE Trans Ind Electron, 2018, 65(7): 5634 doi: 10.1109/TIE.2017.2782224
|
[7] |
Guha A, Patra A. State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models. IEEE Trans Transp Electrific, 2018, 4(1): 135 doi: 10.1109/TTE.2017.2776558
|
[8] |
Li D Z, Wang W, Ismail F. A mutated particle filter technique for system state estimation and battery life prediction. IEEE Trans Instrum Meas, 2014, 63(8): 2034 doi: 10.1109/TIM.2014.2303534
|
[9] |
焦東升, 王海云, 朱潔, 等. 基于離散Fréchet距離的電動汽車電池健康狀態診斷方法. 電力系統保護與控制, 2016, 44(12):68 doi: 10.7667/PSPC151245
Jiao D S, Wang H Y, Zhu J, et al. EV battery SOH diagnosis method based on discrete Fréchet distance. Power Syst Prot Control, 2016, 44(12): 68 doi: 10.7667/PSPC151245
|
[10] |
Shen P, Ouyang M G, Lu L G, et al. The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles. IEEE Trans Veh Technol, 2018, 67(1): 92 doi: 10.1109/TVT.2017.2751613
|
[11] |
Yang F F, Wang D, Xing Y J, et al. Prognostics of Li (NiMnCo) O2-based lithium-ion batteries using a novel battery degradation model. Microelectron Reliab, 2017, 70: 70 doi: 10.1016/j.microrel.2017.02.002
|
[12] |
Feng J, Kvam P, Tang Y Z. Remaining useful lifetime prediction based on the damage-marker bivariate degradation model: a case study on lithium-ion batteries used in electric vehicles. Eng Fail Anal, 2016, 70: 323 doi: 10.1016/j.engfailanal.2016.04.014
|
[13] |
Sahinoglu G O, Pajovic M, Sahinoglu Z, et al. Battery state-of-charge estimation based on regular/recurrent Gaussian process regression. IEEE Trans Ind Electron, 2018, 65(5): 4311 doi: 10.1109/TIE.2017.2764869
|
[14] |
Andre D, Nuhic A, Soczka-Guth T, et al. Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles. Eng Appl Artif Intell, 2013, 26(3): 951 doi: 10.1016/j.engappai.2012.09.013
|
[15] |
Hussein A A. Capacity fade estimation in electric vehicle Li-ion batteries using artificial neural networks. IEEE Trans Ind Appl, 2015, 51(3): 2321 doi: 10.1109/TIA.2014.2365152
|
[16] |
Peng X, Zhang C, Yu Y, et al. Battery remaining useful life prediction algorithm based on support vector regression and unscented particle filter // 2016 IEEE International Conference on Prognostics and Health Management (ICPHM). Ottawa, 2016: 1
|
[17] |
Wu J, Zhang C B, Chen Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl Energy, 2016, 173: 134 doi: 10.1016/j.apenergy.2016.04.057
|
[18] |
Li H, Pan D H, Chen C L P. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine. IEEE Trans Syst Man Cybern Syst, 2014, 44(7): 851 doi: 10.1109/TSMC.2013.2296276
|
[19] |
Zhou Y P, Huang M H, Chen Y P, et al. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction. J Power Sources, 2016, 321: 1 doi: 10.1016/j.jpowsour.2016.04.119
|
[20] |
劉金枝, 楊鵬, 李練兵. 一種基于能量建模的鋰離子電池電量估算方法. 電工技術學報, 2015, 30(13):100 doi: 10.3969/j.issn.1000-6753.2015.13.014
Liu J Z, Yang P, Li L B. A method to estimate the capacity of the lithium-ion battery based on energy model. Trans China Electrotech Soc, 2015, 30(13): 100 doi: 10.3969/j.issn.1000-6753.2015.13.014
|
[21] |
Liu X B, Li Y, Wang N T, et al. A novel model-driven method for lithium-ion battery remaining useful life prediction // 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). Yangzhou, 2017: 446
|