<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
LI Lian-bing, JI Liang, ZHU Ya-zun, WANG Zhi-jiang, JI Lei. Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack[J]. Chinese Journal of Engineering, 2020, 42(6): 796-802. doi: 10.13374/j.issn2095-9389.2019.07.03.003
Citation: LI Lian-bing, JI Liang, ZHU Ya-zun, WANG Zhi-jiang, JI Lei. Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack[J]. Chinese Journal of Engineering, 2020, 42(6): 796-802. doi: 10.13374/j.issn2095-9389.2019.07.03.003

Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack

doi: 10.13374/j.issn2095-9389.2019.07.03.003
More Information
  • Corresponding author: E-mail: 1561013191@qq.com
  • Received Date: 2019-07-03
  • Publish Date: 2020-06-01
  • The depletion and environmental pollution associated with traditional fossil energy sources has generated great interest in the development of new energy. Among the kinds of new-energy batteries, lithium-ion batteries have the advantages of small size, high energy density, a long life cycle, zero emissions, and no pollution. These batteries are widely used in many industries and fields, including vehicles. Currently, assessments of the health status of lithium-ion batteries have become a hot research topic. The lithium-ion battery has complex electrochemical characteristics and its capacity tends to degrade with cyclic charges and discharges. When its capacity degrades to the failure threshold (usually 70%–80% of rated capacity), the life of lithium ion battery is considered to have reached an end. Therefore, investigations to better predict the remaining useful life of a lithium-ion battery can help to improve system reliability and prevent accidents. Battery-system health evaluations have important research and application value. In this study, the voltage change curves of the lithium-ion battery were investigated with discharge time under equivalent cycle conditions and different cycle times. By analyzing the slope change rule of the derivative function at an equivalent characteristic point for different cycle times, the life degradation curves of the lithium-ion battery under equivalent cycle conditions were established. Using the NASA and self-test JZ equivalent cycle batteries, the intersection point of the specific-slope straight line and curve at early and late stages of discharge was taken as the equivalent feature points for predicting the equivalent cycle life. Based on these two groups of feature points, Mini and Mlat degradation models were established, respectively. To verify this method, other batteries in the equivalent-cycle battery pack were tested. The results of the test data set validate the prediction accuracy and stability, which has strong application value.

     

  • loading
  • [1]
    Liu D T, Xie W, Liao H T, et al. An integrated probabilistic approach to lithium-ion battery remaining useful life estimation. IEEE Trans Instrum Meas, 2015, 64(3): 660 doi: 10.1109/TIM.2014.2348613
    [2]
    Gu R, Malysz P, Yang H, et al. On the suitability of electrochemical-based modeling for lithium-ion batteries. IEEE Trans Transp Electrific, 2016, 2(4): 417 doi: 10.1109/TTE.2016.2571778
    [3]
    楊帆, 喬艷龍, 甘德剛, 等. 不同充電模式對鋰離子電池極化特性影響. 電工技術學報, 2017, 32(12):171

    Yang F, Qiao Y L, Gan D G, et, al. Lithium-ion battery polarization characteristics at different charging modes. Trans China Electrotech Soc, 2017, 32(12): 171
    [4]
    孫丙香, 姜久春, 韓智強, 等. 基于不同衰退路徑下的鋰離子動力電池低溫應力差異性. 電工技術學報, 2016, 31(10):159 doi: 10.3969/j.issn.1000-6753.2016.10.019

    Sun B X, Jiang J C, Han Z Q, e t, a l. The lithium-ion battery low temperature stress based on different degradation paths. Trans China Electrotech Soc, 2016, 31(10): 159 doi: 10.3969/j.issn.1000-6753.2016.10.019
    [5]
    Yan W Z, Zhang B, Zhao G Q, et al. A battery management system with a Lebesgue-sampling-based extended Kalman filter. IEEE Trans Ind Electron, 2019, 66(4): 3227 doi: 10.1109/TIE.2018.2842782
    [6]
    Wei J W, Dong G Z, Chen Z H. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression. IEEE Trans Ind Electron, 2018, 65(7): 5634 doi: 10.1109/TIE.2017.2782224
    [7]
    Guha A, Patra A. State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models. IEEE Trans Transp Electrific, 2018, 4(1): 135 doi: 10.1109/TTE.2017.2776558
    [8]
    Li D Z, Wang W, Ismail F. A mutated particle filter technique for system state estimation and battery life prediction. IEEE Trans Instrum Meas, 2014, 63(8): 2034 doi: 10.1109/TIM.2014.2303534
    [9]
    焦東升, 王海云, 朱潔, 等. 基于離散Fréchet距離的電動汽車電池健康狀態診斷方法. 電力系統保護與控制, 2016, 44(12):68 doi: 10.7667/PSPC151245

    Jiao D S, Wang H Y, Zhu J, et al. EV battery SOH diagnosis method based on discrete Fréchet distance. Power Syst Prot Control, 2016, 44(12): 68 doi: 10.7667/PSPC151245
    [10]
    Shen P, Ouyang M G, Lu L G, et al. The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles. IEEE Trans Veh Technol, 2018, 67(1): 92 doi: 10.1109/TVT.2017.2751613
    [11]
    Yang F F, Wang D, Xing Y J, et al. Prognostics of Li (NiMnCo) O2-based lithium-ion batteries using a novel battery degradation model. Microelectron Reliab, 2017, 70: 70 doi: 10.1016/j.microrel.2017.02.002
    [12]
    Feng J, Kvam P, Tang Y Z. Remaining useful lifetime prediction based on the damage-marker bivariate degradation model: a case study on lithium-ion batteries used in electric vehicles. Eng Fail Anal, 2016, 70: 323 doi: 10.1016/j.engfailanal.2016.04.014
    [13]
    Sahinoglu G O, Pajovic M, Sahinoglu Z, et al. Battery state-of-charge estimation based on regular/recurrent Gaussian process regression. IEEE Trans Ind Electron, 2018, 65(5): 4311 doi: 10.1109/TIE.2017.2764869
    [14]
    Andre D, Nuhic A, Soczka-Guth T, et al. Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles. Eng Appl Artif Intell, 2013, 26(3): 951 doi: 10.1016/j.engappai.2012.09.013
    [15]
    Hussein A A. Capacity fade estimation in electric vehicle Li-ion batteries using artificial neural networks. IEEE Trans Ind Appl, 2015, 51(3): 2321 doi: 10.1109/TIA.2014.2365152
    [16]
    Peng X, Zhang C, Yu Y, et al. Battery remaining useful life prediction algorithm based on support vector regression and unscented particle filter // 2016 IEEE International Conference on Prognostics and Health Management (ICPHM). Ottawa, 2016: 1
    [17]
    Wu J, Zhang C B, Chen Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl Energy, 2016, 173: 134 doi: 10.1016/j.apenergy.2016.04.057
    [18]
    Li H, Pan D H, Chen C L P. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine. IEEE Trans Syst Man Cybern Syst, 2014, 44(7): 851 doi: 10.1109/TSMC.2013.2296276
    [19]
    Zhou Y P, Huang M H, Chen Y P, et al. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction. J Power Sources, 2016, 321: 1 doi: 10.1016/j.jpowsour.2016.04.119
    [20]
    劉金枝, 楊鵬, 李練兵. 一種基于能量建模的鋰離子電池電量估算方法. 電工技術學報, 2015, 30(13):100 doi: 10.3969/j.issn.1000-6753.2015.13.014

    Liu J Z, Yang P, Li L B. A method to estimate the capacity of the lithium-ion battery based on energy model. Trans China Electrotech Soc, 2015, 30(13): 100 doi: 10.3969/j.issn.1000-6753.2015.13.014
    [21]
    Liu X B, Li Y, Wang N T, et al. A novel model-driven method for lithium-ion battery remaining useful life prediction // 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). Yangzhou, 2017: 446
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views (1785) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频