Citation: | ZHANG Cheng, XUE Ji-lai, LIU Xuan, LI Xiang, ZHU Jun, LIU Qiao-chu, QIAN Yi. Production of aluminum alloys in electrolysis cells based on Hall-Héroult process: a review[J]. Chinese Journal of Engineering, 2019, 41(7): 835-846. doi: 10.13374/j.issn2095-9389.2019.07.001 |
[1] |
Grjotheim K. Aluminium Electrolysis: Fundamentals of the Hall-Héroult Process. 3rd Ed. Dusseldorf: Aluminum-Verlag, 2002
|
[2] |
邱竹賢. 預焙槽煉鋁. 北京: 冶金工業出版社, 2006
Qiu Z X. Prebaked Aluminium. Beijing: Metallurgical Industry Press, 2006
|
[3] |
劉業翔, 李劼. 現代鋁電解. 北京: 冶金工業出版社, 2008
Liu Y X, Li J. Morden Alumuniun Electrolysis. Beijing: Metallurgical Industry Press, 2008
|
[4] |
唐定驤, 劉余九, 張洪杰. 稀土金屬材料. 北京: 冶金工業出版社, 2011
Tang D X, Liu Y J, Zhang H J. The Rare Earth Metal Materials. Beijing: Metallurgical Industry Press, 2011
|
[5] |
王曉英, 仇圣桃, 鄒宗樹, 等. Al-Ca復合合金鋼水脫氧機理的研究. 工程科學學報, 2017, 39(5): 702 doi: 10.13374/j.issn2095-9389.2017.05.008
Wang X Y, Qiu S T, Zou Z S, et al. Study on steel deoxidation with Al-Ca compound alloy. Chin J Eng, 2017, 39(5): 702 doi: 10.13374/j.issn2095-9389.2017.05.008
|
[6] |
Kojima Y. Project of platform science and technology for advanced magnesium alloys. Mater Trans, 2001, 42(7): 1154 doi: 10.2320/matertrans.42.1154
|
[7] |
Park G H, Kim J T, Park H J, et al. Development of lightweight Mg-Li-Al alloys with high specific strength. J Alloys Compd, 2016, 680: 116 doi: 10.1016/j.jallcom.2016.04.109
|
[8] |
Abu-Dheir N, Khraisheh M, Saito K, et al. Silicon morphology modification in the eutectic Al-Si alloy using mechanical mold vibration. Mater Sci Eng A, 2005, 393(1-2): 109 doi: 10.1016/j.msea.2004.09.038
|
[9] |
Xiu Z Y, Chen G Q, Wang X F, et al. Microstructure and performance of Al-Si alloy with high Si content by high temperature diffusion treatment. Trans Nonferrous Met Soc China, 2010, 20(11): 2134 doi: 10.1016/S1003-6326(09)60430-1
|
[10] |
高希柱, 劉同湖, 李景坤, 等. 電解生產鋁鈦合金研究與實踐. 輕金屬, 2006(5): 48 doi: 10.3969/j.issn.1002-1752.2006.05.012
Gao X Z, Liu T H, Li J K, et al. Study and practice of making aluminum and titanium alloy by aluminum electrolysis. Light Met, 2006(5): 48 doi: 10.3969/j.issn.1002-1752.2006.05.012
|
[11] |
楊昇, 楊冠群. 電解法生產鋁合金. 北京: 冶金工業出版社, 2010
Yang S, Yang G Q. Production of Aluminum Alloys by Electrolysis. Beijing: Metallurgical Industry Press, 2010
|
[12] |
陳宇昕. 氟化物體系電解稀土氧化物制備稀土金屬研究. 稀土, 2014, 35(2): 99 https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201402024.htm
Chen Y X. Research progress of preparation of rare earth metals by electrolysis in fluoride salt system. Chin Rare Earths, 2014, 35(2): 99 https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201402024.htm
|
[13] |
馮乃祥. 鋁電解. 北京: 化學工業出版社, 2008
Feng N X. Aluminium Electrolysis. Beijing: Chemical Industry Press, 2008
|
[14] |
闞洪敏, 班允剛, 邱竹賢, 等. 鋁電解質體系初晶溫度、密度和電導率. 過程工程學報, 2007, 7(3): 604 doi: 10.3321/j.issn:1009-606X.2007.03.034
Kan H M, Ban Y G, Qiu Z X, et al. Liquidus temperature, density and electrical conductivity of electrolyte for aluminum electrolysis. Chin J Process Eng, 2007, 7(3): 604 doi: 10.3321/j.issn:1009-606X.2007.03.034
|
[15] |
劉東任, 楊占紅, 李旺興, 等. 鉀冰晶石低溫電解質研究現狀. 輕金屬, 2009(10): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200910005.htm
Liu D R, Yang Z H, Li W X, et al. Research on potassium cryolite for low temperature aluminium electrolysis. Light Met, 2009(10): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200910005.htm
|
[16] |
Apisarov A, Dedyukhin A, Redkin A, et al. Physical-chemical properties of the KF-NaF-AlF3 molten system with low cryolite ratio//TMS 2009 Annual Meeting and Exhibition. San Francisco, 2009: 401 http://www.researchgate.net/publication/289830397_Physical-chemical_properties_of_the_KF-NAF-ALF3_molten_system_with_low_cryolite_ratio
|
[17] |
Yang J, Graczyk D G, Wunsch C, et al. Alumina solubility in KF-AlF3-based low-temperature electrolyte system//TMS 2007 Annual Meeting and Exhibition. Orlando, 2007: 537 http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=915006
|
[18] |
劉翹楚. KF-AlF3-Sc2O3體系直接電解制備鋁鈧合金基礎研究[學位論文]. 北京: 北京科技大學, 2012
Liu Q C. Preparation of Al-Sc Alloys by Electrolysis in KF-AlF3-Sc2O3 Melts System[Dissertation]. Beijing: University of Science and Technology Beijing, 2012
|
[19] |
劉慶生, 薛濟來, 朱駿, 等. 添加劑對鋁電解炭基陰極鈉滲透膨脹過程的影響. 北京科技大學學報, 2008, 30(4): 403 doi: 10.3321/j.issn:1001-053X.2008.04.015
Liu Q S, Xue J L, Zhu J, et al. Effects of additives on the sodium penetration and expansion of carbon-based cathodes during aluminum electrolysis. J Univ Sci Technol Beijing, 2008, 30(4): 403 doi: 10.3321/j.issn:1001-053X.2008.04.015
|
[20] |
田忠良, 賴延清, 銀瑰, 等. 低溫鋁電解研究進展. 有色金屬(冶煉部分), 2004(5): 26 doi: 10.3969/j.issn.1007-7545.2004.05.009
Tian Z L, Lai Y Q, Yin G, et al. Progress on low temperature aluminium electrolysis. Nonferrous Met (Extract Metall), 2004(5): 26 doi: 10.3969/j.issn.1007-7545.2004.05.009
|
[21] |
陳建設, 李德祥. 鋁電解質Na3AlF6-AlF3-LiF-MgF2-CaF2系初晶溫度上20 ℃的熔鹽性質和等溶成分. 輕金屬, 2009(1): 22 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200901007.htm
Chen J S, Li D X. Molten salts properties and electrolyte compositions with same solubility of alumina at 20 ℃ above liquidus of aluminium electrolyte for Na3AlF6-AlF3-LiF-MgF2-CaF2 system. Light Met, 2009(1): 22 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200901007.htm
|
[22] |
徐徽, 劉衛平, 董瑞, 等. 氧化鎂在熔鹽中溶解度的研究. 有色金屬(冶煉部分), 2011(1): 20 doi: 10.3969/j.issn.1007-7545.2011.01.006
Xu H, Liu W P, Dong R, et al. Study on solubility of MgO in melt salt. Nonferrous Met (Extract Metall), 2011(1): 20 doi: 10.3969/j.issn.1007-7545.2011.01.006
|
[23] |
吳文遠, 孫金治, 海力, 等. 氧化釹在氟鹽體系中的溶解度. 稀土, 1991, 12(3): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ199103007.htm
Wu W Y, Sun J Z, Hai L, et al. Solubility of Nd2O3 in fluoride molten salt. Chin Rare Earths, 1991, 12(3): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ199103007.htm
|
[24] |
郭瑞, 翟秀靜, 張廷安. 氧化鈧在冰晶石-氟化鋰體系中的溶解性能. 材料與冶金學報, 2008, 7(4): 264 doi: 10.3969/j.issn.1671-6620.2008.04.006
Guo R, Zhai X J, Zhang T A. Dissolution of Sc2O3 in nNaF·AlF3-LiF molten salt. J Mater Metall, 2008, 7(4): 264 doi: 10.3969/j.issn.1671-6620.2008.04.006
|
[25] |
路貴民, 劉學山. 氧化鈧在nNaF·AlF3-ScF3熔鹽體系中的溶解. 中國有色金屬學報, 1999, 9(3): 624 doi: 10.3321/j.issn:1004-0609.1999.03.035
Lu G M, Liu X S. Dissolution of Sc2O3 in fluoride molten salt. Chin J Nonferrous Met, 1999, 9(3): 624 doi: 10.3321/j.issn:1004-0609.1999.03.035
|
[26] |
楊昇, 李強, 顧松青. 氧化鈧在冰晶石-氧化鋁體系中的溶解性能研究. 稀有金屬, 2003, 27(3): 418 doi: 10.3969/j.issn.0258-7076.2003.03.026
Yang S, Li Q, Gu S Q. Solubility of Sc2O3 in nNaF·AlF3-Al2O3 melts. Chin J Rare Met, 2003, 27(3): 418 doi: 10.3969/j.issn.0258-7076.2003.03.026
|
[27] |
沈祥清, 沈時英. 稀土原料的價態與性質對它在冰晶石-氧化鋁系熔體中溶解度的影響. 稀土, 1990(1): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ199001015.htm
Shen X Q, Shen S Y. The influence of valence and properties of rare earth metalls on its solubility in the cryolite-alumina molten salt. Chin Rare Earths, 1990(1): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ199001015.htm
|
[28] |
Jentoftsen T E, Lorentsen O A, Dewing E W, et al. Solubility of some transition metal oxides in cryolite-alumina melts: Part Ⅱ. Solubility of TiO2. Metall Mater Trans B, 2002, 33(6): 909 doi: 10.1007/s11663-002-0074-6
|
[29] |
Weill D F. Stability relations in the Al2O3-SiO2 system calculated from solubilities in the Al2O3-Na3AlF6 system. Geochim Cosmochim Acta, 1966, 30(2): 223 doi: 10.1016/0016-7037(66)90109-8
|
[30] |
Lorentsen O A, Jentoftsen T E, Dewing E W, et al. The solubility of some transition metal oxides in cryolite-alumina melts: Part Ⅲ. Solubility of CuO and Cu2O. Metall Mater Trans B, 2007, 38(5): 833 doi: 10.1007/s11663-007-9043-4
|
[31] |
Lemaire G, Hebant P, Picard G S. DFT analysis of interfacial processes occurring in the first steps of electrodeposition of nickel from chloride melt. J Mol Struct, 1997, 419(1-3): 1 doi: 10.1016/S0166-1280(97)00250-9
|
[32] |
Zhou Z Y, Wu B, Dou S S, et al. Thermodynamic properties of elements and compounds in Al-Sc binary system from Ab initio calculations based on density functional theory. Metall Mater Trans A, 2014, 45(4): 1720 doi: 10.1007/s11661-013-2117-9
|
[33] |
Ar?kan N, Charifi Z, Baaziz H, et al. Electronic structure, phase stability, and vibrational properties of Ir-based intermetallic compound IrX (X=Al, Sc, and Ga). J Phys Chem Solids, 2015, 77: 126 doi: 10.1016/j.jpcs.2014.10.007
|
[34] |
Baehr H D. Thermochemical properties of inorganic substances. Forsch Ingenieurwes, 1992, 58(4): 103 doi: 10.1007/BF02561491
|
[35] |
Knacke O, Kubaschewski O, Hesselmann K. Thermochemical Properties of Inorganic Substances. Forschung im Ingenieurwesen, 1992, 58(4): 103 doi: 10.1007/BF02561491
|
[36] |
Barin I, Platzki G. Thermochemical Data of Pure Substances. 3rd Ed. Weinheim: VCH Verlag, 1995
|
[37] |
Adzic R, Yeager E, Cahan B D. Optical and electrochemical studies of underpotential deposition of lead on gold evaporated and single-crystal electrodes. J Electrochem Soc, 1974, 121(4): 474 doi: 10.1149/1.2401841
|
[38] |
Kolb D M, Przasnyski M, Gerischer H. Underpotential deposition of metals and work function differences. J Electroanal Chem Interfacial Electrochem, 1974, 54(1): 25 doi: 10.1016/S0022-0728(74)80377-3
|
[39] |
Castrillejo Y, Bermejo R, Martínez A M, et al. Application of electrochemical techniques in pyrochemical processes-Electrochemical behaviour of rare earths at W, Cd, Bi and Al electrodes. J Nucl Mater, 2007, 360(1): 32 doi: 10.1016/j.jnucmat.2006.08.011
|
[40] |
Castrillejo Y, Vega A, Vega M, et al. Electrochemical formation of Sc-Al intermetallic compounds in the eutectic LiCl-KCl. Determination of thermodynamic properties. Electrochim Acta, 2014, 118: 58 doi: 10.1016/j.electacta.2013.11.163
|
[41] |
Castrillejo Y, Fernández P, Bermejo M R, et al. Electrochemistry of thulium on inert electrodes and electrochemical formation of a Tm-Al alloy from molten chlorides. Electrochim Acta, 2009, 54(26): 6212 doi: 10.1016/j.electacta.2009.05.095
|
[42] |
Castrillejo Y, Fernández P, Medina J, et al. Electrochemical extraction of samarium from molten chlorides in pyrochemical processes. Electrochim Acta, 2011, 56(24): 8638 doi: 10.1016/j.electacta.2011.07.059
|
[43] |
Bermejo M R, Barrado E, Martinez A M, et al. Electrodeposition of Lu on W and Al electrodes: Electrochemical formation of Lu-Al alloys and oxoacidity reactions of Lu(Ⅲ) in the eutectic LiCl-KCl. J Electroanal Chem, 2008, 617(1): 85 doi: 10.1016/j.jelechem.2008.01.017
|
[44] |
Bermejo M R, Gomez J, Medina J, et al. The electrochemistry of gadolinium in the eutectic LiCl-KCl on W and Al electrodes. J Electroanal Chem, 2006, 588(2): 253 doi: 10.1016/j.jelechem.2005.12.031
|
[45] |
Kononov A, Polyakov E. High-temperature electrochemical synthesis and properties of intermetallic compounds of the Ni-Sc system. Part 1. Electrochemical behaviour of Sc(Ⅲ) in chloride-fluoride melts. J Alloys Compd, 1996, 239(2): 103 doi: 10.1016/0925-8388(96)02209-8
|
[46] |
Liu Q C, Xue J L, Zhu J, et al. Preparing aluminium-scandium inter-alloys during reduction process in KF-AlF3-SC2O3 melts//TMS 2012 Annual Meeting and Exhibition. Orlando, 2012: 685
|
[47] |
Nohira T, Kambara H, Amezawa K, et al. Electrochemical formation and phase control of Pr-Ni alloys in a molten LiCl-KCl-PrCl3 system. J Electrochem Soc, 2005, 152(4): C183 http://ci.nii.ac.jp/naid/10026708479
|
[48] |
Ji D B, Yan Y D, Zhang M L, et al. Study on electrochemical behavior of La(Ⅲ) and preparation of Al-La intermetallic compound whiskers in chloride melt. J Electrochem Soc, 2016, 163(2): D1 doi: 10.1149/2.0101602jes
|
[49] |
Castrillejo Y, Bermejo M R, Arocas P D, et al. The electrochemical behaviour of the Pr(Ⅲ)/Pr redox system at Bi and Cd liquid electrodes in molten eutectic LiCl-KCl. J Electroanal Chem, 2005, 579(2): 343 doi: 10.1016/j.jelechem.2005.03.001
|
[50] |
Castrillejo Y, Bermejo M R, Barrado E, et al. Electrodeposition of Ho and electrochemical formation of Ho-Al alloys from the eutectic LiCl-KCl. J Electrochem Soc, 2006, 153(10): C713 http://www.researchgate.net/publication/239262095_Electrodeposition_of_Ho_and_Electrochemical_Formation_of_Ho-Al_Alloys_from_the_Eutectic_LiCl-KCl
|
[51] |
張艷霞. 鋁鈧與鎂鋰基合金的熔鹽電解制備及機理研究[學位論文]. 哈爾濱: 哈爾濱工程大學, 2011
Zhang Y X. Study on Preparation and Mechanism of Al-Sc and Mg-Li Based Alloys by Electrolysis in Molten Salt[Dissertation]. Harbin: Harbin Engineering University, 2011
|
[52] |
陳輝煌, 陳本孝, 林立杰. 電解法制取鋁鈦硼中間合金. 江西有色金屬, 2001, 15(4): 15 doi: 10.3969/j.issn.1674-9669.2001.04.005
Chen H H, Chen B X, Lin L J. Preparing Al-Ti-B-RE medium alloys by electrolysis. Jiangxi Nonferrous Met, 2001, 15(4): 15 doi: 10.3969/j.issn.1674-9669.2001.04.005
|
[53] |
Gibilaro M, Massot L, Chamelot P, et al. Study of neodymium extraction in molten fluorides by electrochemical co-reduction with aluminium. J Nucl Mater, 2008, 382(1): 39 doi: 10.1016/j.jnucmat.2008.09.004
|
[54] |
于旭光, 邱竹賢. 熔鹽電解制備稀土鋁合金的研究. 稀土, 2006, 27(6): 33 doi: 10.3969/j.issn.1004-0277.2006.06.008
Yu X G, Qiu Z X. Preparation of Al-RE alloy by molten salt electrolysis. Chin Rare Earths, 2006, 27(6): 33 doi: 10.3969/j.issn.1004-0277.2006.06.008
|
[55] |
廖春發, 羅林生, 王旭, 等. 熔鹽電解制備鋁釹中間合金及其機理. 中國有色金屬學報, 2015, 25(12): 3523 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201512031.htm
Liao C F, Luo L S, Wang X, et al. Preparation for Al-Nd intermediate alloy by molten-salt electrolysis method and its mechanism. Chin J Nonferrous Met, 2015, 25(12): 3523 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201512031.htm
|
[56] |
詹磊. 150 kA預焙鋁電解槽生產稀土鋁中間合金生產實踐. 甘肅冶金, 2012, 34(6): 32 doi: 10.3969/j.issn.1672-4461.2012.06.010
Zhan L. Practice of RE-Al alloys production with pre-baked Al reduction pot. Gansu Metall, 2012, 34(6): 32 doi: 10.3969/j.issn.1672-4461.2012.06.010
|
[57] |
龐思明, 顏世宏, 李宗安, 等. 我國熔鹽電解法制備稀土金屬及其合金工藝技術進展. 稀有金屬, 2011, 35(3): 440 doi: 10.3969/j.issn.0258-7076.2011.03.022
Pang S M, Yan S H, Li Z A, et al. Development on molten salt electrolytic methods and technology for preparing rare earth metals and alloys in China. Chin J Rare Met, 2011, 35(3): 440 doi: 10.3969/j.issn.0258-7076.2011.03.022
|
[58] |
李廣宇, 楊少華, 李繼東, 等. 熔鹽電解法制備鋁鈧合金的研究. 輕金屬, 2007(5): 54 doi: 10.3969/j.issn.1002-1752.2007.05.015
Li G Y, Yang S H, Li J D, et al. Preparation of Al-Sc alloys by molten salt electrolysis. Light Met, 2007(5): 54 doi: 10.3969/j.issn.1002-1752.2007.05.015
|
[59] |
郭瑞, 曹文亮, 翟秀靜, 等. 熔鹽電解法制備Al-Sc應用合金的工藝研究. 稀有金屬, 2008, 32(5): 645 doi: 10.3969/j.issn.0258-7076.2008.05.021
Guo R, Cao W L, Zhai X J, et al. Preparation of Al-Sc application alloys by molten salt electrolysis method. Chin J Rare Met, 2008, 32(5): 645 doi: 10.3969/j.issn.0258-7076.2008.05.021
|
[60] |
縢國春, 翟秀靜, 李俊福, 等. 鋁鈧合金的熔鹽電解法制備研究. 有色礦冶, 2009, 25(1): 26 doi: 10.3969/j.issn.1007-967X.2009.01.008
Teng G C, Zhai X J, Li J F, et al. Study on preparation of Al-Sc alloys by molten electrolysis. Non-Ferrous Min Metall, 2009, 25(1): 26 doi: 10.3969/j.issn.1007-967X.2009.01.008
|
[61] |
Liu Q C, Xue J L, Zhu J, et al. Processing Al-Sc alloys at liquid aluminum cathode in KF-AlF3 molten salt. ECS Trans, 2013, 50(11): 483 doi: 10.1149/05011.0483ecst
|
[62] |
楊昇. 電解法生產鋁鈧合金的研究[學位論文]. 鄭州: 鄭州大學, 2003
Yang S. The Research on Direct Electrolytic Al-Sc Alloys in Molten Salt[Dissertation]. Zhengzhou: Zhengzhou University, 2003
|
[63] |
錢義. 熔鹽電解法制備鋁鈧鋯合金的基礎研究[學位論文]. 北京: 北京科技大學, 2017
Qian Y. Fundamental Studies on Preparation of Al-Sc-Zr Alloys by Electrolysis in Molten Salts[Dissertation]. Beijing: University of Science and Technology Beijing, 2017
|
[64] |
Qian Y, Xue J L, Liu Q C, et al. Preparing Al-Sc-Zr alloys in aluminum electrolysis process//TMS 2013 Annual Meeting and Exhibition. San Antonio, 2013: 1311
|
[65] |
Jung J G, Lee S H, Lee J M, et al. Improved mechanical properties of near-eutectic Al-Si piston alloy through ultrasonic melt treatment. Mater Sci Eng A, 2016, 669: 187 doi: 10.1016/j.msea.2016.05.087
|
[66] |
Puga H, Barbosa J, Costa S, et al. Influence of indirect ultrasonic vibration on the microstructure and mechanical behavior of Al-Si-Cu alloy. Mater Sci Eng A, 2013, 560: 589 doi: 10.1016/j.msea.2012.09.106
|
[67] |
Feng H K, Yu S R, Li Y L, et al. Effect of ultrasonic treatment on microstructures of hypereutectic Al-Si alloy. J Mater Process Technol, 2008, 208(1-3): 330 doi: 10.1016/j.jmatprotec.2007.12.121
|
[68] |
Qiu Z X, Zhang M J, Wang J, et al. Preparation of aluminum-magnesium master alloys by electrolysis of magnesium oxide in fluoride melts//TMS 1990 Annual Meeting and Exhibition. New Orleans, 1990: 349
|
[69] |
楊少華. 以氧化鎂為原料熔鹽電解法制備Al-Mg合金的研究[學位論文]. 沈陽: 東北大學, 2008
Yang S H. Study on Preparation Al-Mg Alloy by Molten Salt Electrolysis Method from Magnesium Oxide[Dissertation]. Shenyang: Northeastern University, 2008
|
[70] |
楊少華, 班允剛, 郭玉華, 等. 以氧化鎂為原料生產鋁鎂合金的研究. 東北大學學報(自然科學版), 2007, 28(6): 839 doi: 10.3321/j.issn:1005-3026.2007.06.020
Yang S H, Ban Y G, Guo Y H, et al. Preparation of aluminum-magnesium alloys from magnesium oxide. J Northeast Univ Nat Sci, 2007, 28(6): 839 doi: 10.3321/j.issn:1005-3026.2007.06.020
|
[71] |
Yang S, Wu L, Yang F L, et al. Preparation of aluminum-magnesium alloy from magnesium oxide in RECl3-KCl-MgCl2 electrolyte by molten salts electrolysis method//TMS 2012 Annual Meeting and Exhibition. Orlando, 2012: 63
|
[72] |
邱竹賢, 于亞鑫, 張明杰. 在鋁電解槽中生產Al-Ti合金. 輕金屬, 1986(4): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS198604006.htm
Qiu Z X, Yu Y X, Zhang M J. Prepare Al-Ti alloy in aluminium reduction cell. Light Met, 1986(4): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS198604006.htm
|
[73] |
于旭光, 邱竹賢. TiO2電解制取Al-Ti合金. 東北大學學報(自然科學版), 2004, 25(11): 1088 https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200411019.htm
Yu X G, Qiu Z X. Preparation of Al-Ti alloy by electrolysing TiO2 in aluminium bath. J Northeast Univ Nat Sci, 2004, 25(11): 1088 https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200411019.htm
|
[74] |
王明星, 劉智勇, 宋天福, 等. 電解生產低鈦鋁合金工業試驗及產品中鈦分布的均勻性分析. 輕金屬, 2003(4): 41 doi: 10.3969/j.issn.1002-1752.2003.04.013
Wang M X, Liu Z Y, Song T F, et al. Test of producing low-Ti aluminum alloy by reduction and analysis of Ti distribution uniformity in the product. Light Met, 2003(4): 41 doi: 10.3969/j.issn.1002-1752.2003.04.013
|
[75] |
范廣新, 王明星, 劉志勇, 等. 電解加鈦與熔配加鈦對工業純鋁晶粒細化的作用. 中國有色金屬學報, 2004, 14(2): 250 doi: 10.3321/j.issn:1004-0609.2004.02.018
Fan G X, Wang M X, Liu Z Y, et al. Grain refinement effects of titanium added to commercial pure aluminum by electrolysis and by master alloys. Chin J Nonferrous Met, 2004, 14(2): 250 doi: 10.3321/j.issn:1004-0609.2004.02.018
|
[76] |
于旭光, 邱竹賢. 熔鹽電解法制取Al-Si合金. 東北大學學報(自然科學版), 2004, 25(5): 442 doi: 10.3321/j.issn:1005-3026.2004.05.010
Yu X G, Qiu Z X. Preparation of Al-Si alloy by molten salt electrolysis. J Northeast Univ Nat Sci, 2004, 25(5): 442 doi: 10.3321/j.issn:1005-3026.2004.05.010
|
[77] |
馬紹良, 許敏, 林玉勝, 等. 大型鋁電解槽直接生產鋁硅合金的研究. 有色金屬(冶煉部分), 2011(5): 20 doi: 10.3969/j.issn.1007-7545.2011.05.005
Ma S L, Xu M, Lin Y S, et al. Research on Al-Si alloy produced from large aluminum reduction cell. Nonferrous Met (Extract Metall), 2011(5): 20 doi: 10.3969/j.issn.1007-7545.2011.05.005
|
[78] |
楊冠群, 楊升, 楊巧芳, 等. 電解法生產鋁硅鈦多元合金述評. 鑄造, 1999(4): 51 doi: 10.3321/j.issn:1001-2249.1999.04.018
Yang G Q, Yang S, Yang Q F, et al. A review on production of Al-Si-Ti alloy by electrolysis. Foundry, 1999(4): 51 doi: 10.3321/j.issn:1001-2249.1999.04.018
|
[79] |
周瑞銘, 張自銘, 王家乃, 等. 在工業鋁電解槽中添加氧化錳直接生產鋁-錳合金. 唐山工程技術學院學報, 1988(2): 33 https://www.cnki.com.cn/Article/CJFDTOTAL-HBLG198802003.htm
Zhou R M, Zhang Z M, Wang J N, et al. Direct production of the aluminum-manganese alloy with the addition of the black manganese in industrial aluminum electrolytic cells. J Tangshan Inst Eng Technol, 1988(2): 33 https://www.cnki.com.cn/Article/CJFDTOTAL-HBLG198802003.htm
|
[80] |
尹英健, 陳芳華, 溫承志. 電解法制取鋁錳合金工業試驗研究. 江西冶金, 1988, 9(3): 43 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYE198803019.htm
Yin Y J, Chen F H, Wen C Z. Industrial test of preparing Al-Mn alloy by electrolysis. Jiangxi Metall, 1988, 9(3): 43 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYE198803019.htm
|
[81] |
黃英科, 肖輝照, 彭德泉. 電解法直接制取Al-Si-Ti合金工業試驗. 中國有色金屬學報, 1995, 5(2): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ502.018.htm
Huang Y K, Xiao H Z, Peng D Q. Industrial test of preparing Al-Si-Ti alloy by electrolysis. Trans Nonferrous Met Soc China, 1995, 5(2): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ502.018.htm
|
[82] |
廖春發, 羅林生, 王旭. 熔鹽電解法制備Al-Cu中間合金. 有色金屬科學與工程, 2015, 6(3): 1 https://cdmd.cnki.com.cn/Article/CDMD-10407-1016244374.htm
Liao C F, Luo L S, Wang X. Preparation of Al-Cu intermediate alloy by molten-salt electrolytic. Nonferrous Met Sci Eng, 2015, 6(3): 1 https://cdmd.cnki.com.cn/Article/CDMD-10407-1016244374.htm
|
[83] |
湯浩. 熔鹽電解法制備Al-Cu-Y中間合金及電化學機理研究[學位論文]. 贛州: 江西理工大學, 2016
Tang H. Study on Preparation of Al-Cu-Y Intermediate Alloy and Electrochemical Mechanism by Molten Salt Electrolysis[Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2016
|
[84] |
羅林生. 熔鹽電解法制備Al-Cu-Nd三元合金及機理研究[學位論文]. 贛州: 江西理工大學, 2015
Luo L S. Research on Mechanism and Preparation of Al-Cu-Nd Alloy by Molten Salt Electrolysis[Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2015
|