<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
SUN Xue-wen, YANG Hai-bo, MI Tao. Heat transfer and ablation of carbon/carbon composites based on multi-field coupling[J]. Chinese Journal of Engineering, 2020, 42(8): 1040-1047. doi: 10.13374/j.issn2095-9389.2019.06.30.002
Citation: SUN Xue-wen, YANG Hai-bo, MI Tao. Heat transfer and ablation of carbon/carbon composites based on multi-field coupling[J]. Chinese Journal of Engineering, 2020, 42(8): 1040-1047. doi: 10.13374/j.issn2095-9389.2019.06.30.002

Heat transfer and ablation of carbon/carbon composites based on multi-field coupling

doi: 10.13374/j.issn2095-9389.2019.06.30.002
More Information
  • Corresponding author: E-mail: yhb@ustb.edu.cn
  • Received Date: 2019-06-30
  • Publish Date: 2020-09-11
  • With the development of hypersonic technology, the demand for thermal protection material is continuously increasing. Carbon/carbon composites are widely used as thermal protection materials in the nose and in the leading edge of hypersonic vehicles owing to their high latent heat and good resistance to high temperatures. The flow field around the aircraft affects the heat transfer and ablation of carbon/carbon composites, changing the thickness and shape of the thermal protection layer. The ablation of carbon/carbon composites alters the flow field distribution, thus conversely affecting the ablation of carbon/carbon composites. To predict the heat transfer and ablation of carbon/carbon composites, a multi-field coupling model was established to predict the transient temperature distribution, ablation rate, and ablation profile of carbon/carbon composites in hypersonic aerothermal environments. The thermochemical non-equilibrium effects of the flow field, heat transfer of the material, and ablation of the material surface were considered in the modeling. The wall temperature and heat flux in the stagnation area change significantly. The initial heat flux is higher and the stagnation heat flux at 1 s is 17.22 MW?m?2. As time passes, the wall temperature increases, the temperature gradient in the stagnation area decreases, the heat flux decreases, and the stagnation heat flux at 30 s is 10.22 MW?m?2. As the temperature of the stagnation area is high, the material at the surface reacts actively and the ablation is more serious, whereas only a small amount of ablation occurs on the side of the model. The shape of the material model changes after the ablation, the leading-edge radius increases, and the ablation depth at the material stagnation point is 17.47 mm at 30 s. The results show that, in the hypersonic aerodynamic thermal environment, the carbon/carbon composites have a certain ablation recession, which leads to change in the external flow field and thermal load. The multi-field flow-heat-ablation coupling model can be used to predict the response of thermal protection materials, which can provide some reference for the design of thermal protection systems.

     

  • loading
  • [1]
    Karimi M S, Oboodi M J. Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows. <italic>Heat Mass Transfer</italic>, 2019, 55(2): 547 doi: 10.1007/s00231-018-2416-1
    [2]
    王璐, 王友利. 高超聲速飛行器熱防護技術研究進展和趨勢分析. 宇航材料工藝, 2016, 46(1):1 doi: 10.3969/j.issn.1007-2330.2016.01.001

    Wang L, Wang Y L. Research progress and trend analysis of hypersonic vehicle thermal protection technology. <italic>Aerosp Mater Technol</italic>, 2016, 46(1): 1 doi: 10.3969/j.issn.1007-2330.2016.01.001
    [3]
    Sziroczak D, Smith H. A review of design issues specific to hypersonic flight vehicles. <italic>Prog Aerosp Sci</italic>, 2016, 84: 1 doi: 10.1016/j.paerosci.2016.04.001
    [4]
    Gulli S, Maddalena L. Arc-jet testing of a variable-transpiration-cooled and uncoated carbon–carbon nose cone. <italic>J Spacecraft Rockets</italic>, 2019, 56(3): 780 doi: 10.2514/1.A34176
    [5]
    李仲平. 防熱復合材料發展與展望. 復合材料學報, 2011, 28(2):1

    Li Z P. Major advancement and development trends of TPS composites. <italic>Acta Mater Compos Sin</italic>, 2011, 28(2): 1
    [6]
    Albano M, Alifanov O M, Budnik S A, et al. Carbon/carbon high thickness shell for advanced space vehicles. <italic>Int J Heat Mass Transfer</italic>, 2019, 128: 613 doi: 10.1016/j.ijheatmasstransfer.2018.05.106
    [7]
    Stern E C, Poovathingal S, Nompelis I, et al. Nonequilibrium flow through porous thermal protection materials, Part I: Numerical methods. <italic>J Comput Phys</italic>, 2019, 380: 408 doi: 10.1016/j.jcp.2017.09.011
    [8]
    Natali M, Kenny J M, Torre L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review. <italic>Prog Mater Sci</italic>, 2016, 84: 192 doi: 10.1016/j.pmatsci.2016.08.003
    [9]
    Wang Y Q, Risch T K, Koo J H. Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator. <italic>Aerosp Sci Technol</italic>, 2019, 91: 301 doi: 10.1016/j.ast.2019.05.039
    [10]
    Tang S F, Hu C L. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. <italic>J Mater Sci Technol</italic>, 2017, 33(2): 117 doi: 10.1016/j.jmst.2016.08.004
    [11]
    Lee S, Park G, Kim J G, et al. Evaluation system for ablative material in a high-temperature torch. <italic>Int J Aeronaut Space Sci</italic>, 2019, 20: 620 doi: 10.1007/s42405-019-00185-2
    [12]
    Helber B, Dias B, Bariselli F, et al. Analysis of meteoroid ablation based on plasma wind-tunnel experiments, surface characterization, and numerical simulations. <italic>Astrophys J</italic>, 2019, 876(2): 120 doi: 10.3847/1538-4357/ab16f0
    [13]
    Zhang K L, Bai S X, Zhu L, et al. Ablation and surface heating behaviors of graphite based Ir-Al coating in a plasma wind tunnel. <italic>Surf Coat Technol</italic>, 2019, 358: 371 doi: 10.1016/j.surfcoat.2018.10.047
    [14]
    Martin A, Boyd I D. Strongly coupled computation of material response and nonequilibrium flow for hypersonic ablation. <italic>J Spacecraft Rockets</italic>, 2015, 52(1): 89 doi: 10.2514/1.A32847
    [15]
    Cross P G, Boyd I D. Reduced reaction mechanism for rocket nozzle ablation simulations. <italic>J Thermophys Heat Transfer</italic>, 2018, 32(2): 429 doi: 10.2514/1.T5291
    [16]
    Mortensen C H, Zhong X L. Real gas and surface ablation effects on hypersonic boundary layer instability over a blunt cone. <italic>AIAA J</italic>, 2013, 54(3): 976
    [17]
    Chen Y K, Milos F S. Multidimensional finite volume fully implicit ablation and thermal response code. <italic>J Spacecraft Rockets</italic>, 2018, 55(4): 914 doi: 10.2514/1.A34184
    [18]
    Chen Y K, G?k?en T, Edquist K T. Two-dimensional ablation and thermal response analyses for mars science laboratory heat shield. <italic>J Spacecraft Rockets</italic>, 2015, 52(1): 134 doi: 10.2514/1.A32868
    [19]
    Kumar R. Numerical investigation of gas-surface interactions due to ablation of high-speed vehicles. <italic>J Spacecraft Rockets</italic>, 2016, 53(3): 538 doi: 10.2514/1.A33433
    [20]
    Li W J, Huang H M, Tian Y, et al. Nonlinear analysis on thermal behavior of charring materials with surface ablation. <italic>Int J Heat Mass Transfer</italic>, 2015, 84: 245 doi: 10.1016/j.ijheatmasstransfer.2015.01.004
    [21]
    Candler G V, Alba C R, Greendyke R B. Characterization of carbon ablation models including effects of gas-phase chemical kinetics. <italic>J Thermophys Heat Transfer</italic>, 2017, 31(3): 512 doi: 10.2514/1.T4752
    [22]
    Qin F, Peng L N, Li J, et al. Numerical simulations of multiscale ablation of carbon/carbon throat with morphology effects. <italic>AIAA J</italic>, 2017, 55(10): 3476 doi: 10.2514/1.J055534
    [23]
    Yin T T, Zhang Z W, Li X F, et al. Modeling ablative behavior and thermal response of carbon/carbon composites. <italic>Comput Mater Sci</italic>, 2014, 95: 35 doi: 10.1016/j.commatsci.2014.07.013
    [24]
    Meng S H, Zhou Y J, Xie W H, et al. Multiphysics coupled fluid/thermal/ablation simulation of carbon/carbon composites. <italic>J Spacecraft Rockets</italic>, 2016, 53(5): 930 doi: 10.2514/1.A33612
    [25]
    Chen W. Numerical analyses of ablative behavior of C/C composite materials. <italic>Int J Heat Mass Transfer</italic>, 2016, 95: 720 doi: 10.1016/j.ijheatmasstransfer.2015.12.031
    [26]
    Gupta R N, Yos J M, Thompson R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K. <italic>NASA Reference Publication 1232</italic>, 1990
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (4692) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频