Citation: | LI Qian, ZHAO Ai-min, GUO Jun, PEI Wei, LIU Su-peng. Crack propagation behavior of ER8 wheel steel containing upper bainite[J]. Chinese Journal of Engineering, 2020, 42(6): 747-754. doi: 10.13374/j.issn2095-9389.2019.06.27.002 |
[1] |
段桂花, 張平, 李金許, 等. 鐵素體和珠光體含量影響變形過程的原位研究. 北京科技大學學報, 2014, 36(8):1032
Duan G H, Zhang P, Li J X, et al. In situ studies on the effect of ferrite and pearlite contents on the deformation process. J Univ Sci Technol Beijing, 2014, 36(8): 1032
|
[2] |
Zeng D F, Lu L T, Gong Y H, et al. Optimization of strength and toughness of railway wheel steel by alloy design. Mater Des, 2016, 92: 998 doi: 10.1016/j.matdes.2015.12.096
|
[3] |
Liu Z X, Gu H C. The in-situ fatigue crack observation of wheel steels. Prakt Metallogr, 2002, 39(4): 21
|
[4] |
Xie Y J, Hu X Z, Wang X H, et al. A theoretical note on mode-I crack branching and kinking. Eng Fract Mech, 2011, 78(6): 919 doi: 10.1016/j.engfracmech.2011.01.023
|
[5] |
Hamada S, Sasaki D, Ueda M, et al. Fatigue limit evaluation considering crack initiation for lamellar pearlitic steel. Procedia Eng, 2011, 10: 1467 doi: 10.1016/j.proeng.2011.04.245
|
[6] |
Mutoh Y, Korda A A, Miyashita Y, et al. Stress shielding and fatigue crack growth resistance in ferritic–pearlitic steel. Mater Sci Eng A, 2007, 468-470: 114 doi: 10.1016/j.msea.2006.07.171
|
[7] |
Zhang W, Liu Y M. Investigation of incremental fatigue crack growth mechanisms using in situ SEM testing. Int J Fatigue, 2012, 42: 14 doi: 10.1016/j.ijfatigue.2011.03.004
|
[8] |
Toribio J, González B, Matos J C. Micro-and macro-analysis of the fatigue crack growth in pearlitic steels. Ciênc Tecnol Mater, 2008, 20(1-2): 68
|
[9] |
Maya-Johnson S, Ramirez A J, Toro A. Fatigue crack growth rate of two pearlitic rail steels. Eng Fract Mech, 2015, 138: 63 doi: 10.1016/j.engfracmech.2015.03.023
|
[10] |
Guan M F, Yu H. Fatigue crack growth behaviors in hot-rolled low carbon steels: a comparison between ferrite–pearlite and ferrite–bainite microstructures. Mater Sci Eng A, 2013, 559: 875 doi: 10.1016/j.msea.2012.09.036
|
[11] |
陳林, 郭飛翔, 王慧軍, 等. 微觀組織對U20Mn貝氏體鋼疲勞裂紋擴展行為的影響. 材料熱處理學報, 2018, 39(2):119
Chen L, Guo F X, Wang H J, et al. Effect of microstructure on fatigue crack propagation behavior of U20Mn bainite steel. Trans Mater Heat Treat, 2018, 39(2): 119
|
[12] |
孫志永, 周華, 程先華. 含有初始裂紋的低碳貝氏體鋼的沖擊韌性. 上海交通大學學報, 2016, 50(7):1000
Sun Z Y, Zhou H, Cheng X H. Impact toughness of low-carbon bainite steel with initial cracks. J Shanghai Jiaotong Univ, 2016, 50(7): 1000
|
[13] |
Teshima T, Kosaka M, Ushioda K, et al. Local cementite cracking induced by heterogeneous plastic deformation in lamellar pearlite. Mater Sci Eng A, 2017, 679: 223 doi: 10.1016/j.msea.2016.10.018
|
[14] |
Masoumi M, Sinatora A, Goldenstein H. Role of microstructure and crystallographic orientation in fatigue crack failure analysis of a heavy haul railway rail. Eng Fail Anal, 2019, 96: 320 doi: 10.1016/j.engfailanal.2018.10.022
|
[15] |
Korda A A, Mutoh Y, Miyashita Y, et al. In situ observation of fatigue crack retardation in banded ferrite–pearlite microstructure due to crack branching. Scripta Mater, 2006, 54(11): 1835 doi: 10.1016/j.scriptamat.2006.02.025
|
[16] |
Eden H C, Garnham J E, Davis C L. Influential microstructural changes on rolling contact fatigue crack initiation in pearlitic rail steels. Mater Sci Technol, 2005, 21(6): 623 doi: 10.1179/174328405X43207
|
[17] |
Garnham J E, Davis C L. The role of deformed rail microstructure on rolling contact fatigue initiation. Wear, 2008, 265(9-10): 1363 doi: 10.1016/j.wear.2008.02.042
|
[18] |
Tomota Y, Watanabe O, Kanie A, et al. Effect of carbon concentration on tensile behaviour of pearlitic steels. Mater Sci Technol, 2003, 19(12): 1715 doi: 10.1179/026708303225008310
|
[19] |
Pardoen T, Dumont D, Deschamps A, et al. Grain boundary versus transgranular ductile failure. J Mech Phys Solids, 2003, 51(4): 637 doi: 10.1016/S0022-5096(02)00102-3
|
[20] |
汪金余, 孫傳喜, 張軍. 內部存在裂紋的輪軌接觸力學分析. 大連交通大學學報, 2017, 38(6):50
Wang J Y, Sun C X, Zhang J. Wheel-rail contact mechanics analysis of internal cracks. J Dalian Jiaotong Univ, 2017, 38(6): 50
|
[21] |
Maya-Johnson S, Santa J F, Toro A. Dry and lubricated wear of rail steel under rolling contact fatigue-Wear mechanisms and crack growth. Wear, 2017, 380-381: 240 doi: 10.1016/j.wear.2017.03.025
|