Citation: | ZHU Yu, DU Chen, WANG Shuo, MA Rui-xin, WANG Cheng-yan. Research progress on the stability of perovskite solar cells[J]. Chinese Journal of Engineering, 2020, 42(1): 16-25. doi: 10.13374/j.issn2095-9389.2019.06.24.006 |
[1] |
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17): 6050 doi: 10.1021/ja809598r
|
[2] |
Wang S H, Sakurai T, Wen W J, et al. Energy level alignment at interfaces in metal halide perovskite solar cells. Adv Mater Interfaces, 2018, 5(22): 1800260 doi: 10.1002/admi.201800260
|
[3] |
Li Y, Ji L, Liu R G, et al. A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. J Mater Chem A, 2018, 6(27): 12842 doi: 10.1039/C8TA04120B
|
[4] |
Petrus M L, Schlipf J, Li C, et al. Capturing the sun: a review of the challenges and perspectives of perovskite solar cells. Adv Energy Mater, 2017, 7(16): 1700264 doi: 10.1002/aenm.201700264
|
[5] |
Gong J, Guo P J, Benjamin S E, et al. Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. J Energy Chem, 2018, 27(4): 1017 doi: 10.1016/j.jechem.2017.12.005
|
[6] |
Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10): 4088 doi: 10.1039/c1nr10867k
|
[7] |
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591 doi: 10.1038/srep00591
|
[8] |
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234 doi: 10.1126/science.aaa9272
|
[9] |
Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 2019, 13: 460 doi: 10.1038/s41566-019-0398-2
|
[10] |
Yang S, Chen S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 2019, 365(6452): 473 doi: 10.1126/science.aax3294
|
[11] |
Chen Q, De Marco N, Yang Y M, et al. Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10(3): 355 doi: 10.1016/j.nantod.2015.04.009
|
[12] |
Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nat Photonics, 2014, 8: 506 doi: 10.1038/nphoton.2014.134
|
[13] |
Kim H S, Im S H, Park N G. Organolead halide perovskite: new horizons in solar cell research. J Phys Chem C, 2014, 118(11): 5615 doi: 10.1021/jp409025w
|
[14] |
Sum T C, Mathews N. Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ Sci, 2014, 7(8): 2518 doi: 10.1039/C4EE00673A
|
[15] |
Han G F, Hadi H D, Bruno A, et al. Additive selection strategy for high performance perovskite photovoltaics. J Phys Chem C, 2017, 122(25): 13884
|
[16] |
Da P M, Zheng G F. Tailoring interface of lead-halide perovskite solar cells. Nano Res, 2017, 10(5): 1471 doi: 10.1007/s12274-016-1405-2
|
[17] |
Gholipour S, Saliba M. From exceptional properties to stability challenges of perovskite solar cells. Small, 2018, 14(46): 1802385 doi: 10.1002/smll.201802385
|
[18] |
Pang S P, Hu H, Zhang J L, et al. NH2CH═NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem Mater, 2014, 26(3): 1485 doi: 10.1021/cm404006p
|
[19] |
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517(7535): 476 doi: 10.1038/nature14133
|
[20] |
Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9(6): 1989 doi: 10.1039/C5EE03874J
|
[21] |
Shi Z J, Guo J, Chen Y H, et al. Lead-free organic?inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv Mater, 2017, 29(16): 1605005 doi: 10.1002/adma.201605005
|
[22] |
Jokar E, Chien C H, Fathi A, et al. Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ Sci, 2018, 11(9): 2353 doi: 10.1039/C8EE00956B
|
[23] |
Xiao Z W, Song Z N, Yan Y F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv Mater, 2019, 31(47): 1803792 doi: 10.1002/adma.201803792
|
[24] |
Li M, Wang Z K, Zhuo M P, et al. Pb–Sn?Cu ternary organometallic halide perovskite solar cells. Adv Mater, 2018, 30(20): 1800258 doi: 10.1002/adma.201800258
|
[25] |
Saliba M, Correa-Baena J P, Gr?tzel M, et al. Perovskite solar cells: from the atomic level to film quality and device performance. Angew Chem Int Ed, 2018, 57(10): 2554 doi: 10.1002/anie.201703226
|
[26] |
Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7(3): 982 doi: 10.1039/c3ee43822h
|
[27] |
Chen Q, Zhou H P, Fang Y H, et al. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat Commun, 2015, 6: 7269 doi: 10.1038/ncomms8269
|
[28] |
Conings B, Drijkoningen J, Gauquelin N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater, 2015, 5(15): 1500477 doi: 10.1002/aenm.201500477
|
[29] |
Huang J B, Tan S Q, Lund P D, et al. Impact of H2O on organic–inorganic hybrid perovskite solar cells. Energy Environ Sci, 2017, 10(11): 2284 doi: 10.1039/C7EE01674C
|
[30] |
Eperon G E, Habisreutinger S N, Leijtens T, et al. The importance of moisture in hybrid lead halide perovskite thin film fabrication. ACS Nano, 2015, 9(9): 9380 doi: 10.1021/acsnano.5b03626
|
[31] |
Fu Q X, Tang X L, Huang B, et al. Recent progress on the long-term stability of perovskite solar cells. Adv Sci, 2018, 5(5): 1700387 doi: 10.1002/advs.201700387
|
[32] |
Jeon N J, Na H, Jung E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy, 2018, 3: 682 doi: 10.1038/s41560-018-0200-6
|
[33] |
Zhang C X, Deng X S, Zheng J F, et al. Solution-synthesized SnO2 nanorod arrays for highly stable and efficient perovskite solar cells. Electrochim Acta, 2018, 283: 1134 doi: 10.1016/j.electacta.2018.07.028
|
[34] |
Tavakoli M M, Yadav P, Tavakoli R, et al. Surface engineering of TiO2 ETL for highly efficient and hysteresis?less planar perovskite solar cell (21.4%) with enhanced open?circuit voltage and stability. Adv Energy Mater, 2018, 8(23): 1800794 doi: 10.1002/aenm.201800794
|
[35] |
Mahmoudi T, Wang Y S, Hahn Y B. Stability enhancement in perovskite solar cells with perovskite/silver–graphene composites in the active layer. ACS Energy Lett, 2019, 4(1): 235 doi: 10.1021/acsenergylett.8b02201
|
[36] |
Li Z, Xiao C X, Yang Y, et al. Extrinsic ion migration in perovskite solar cells. Energy Environ Sci, 2017, 10(5): 1234 doi: 10.1039/C7EE00358G
|
[37] |
Wei D, Ma F S, Wang R, et al. Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells. Adv Mater, 2018, 30(31): 1707583 doi: 10.1002/adma.201707583
|
[38] |
Liu L, Huang S, Lu Y, et al. Grain-boundary “patches” by in situ conversion to enhance perovskite solar cells stability. Adv Mater, 2018, 30(29): 1800544 doi: 10.1002/adma.201800544
|
[39] |
Tsai H, Asadpour R, Blancon J C, et al. Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat Commun, 2018, 9: 2130 doi: 10.1038/s41467-018-04430-2
|
[40] |
Chen P, Bai Y, Wang S C, et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv Funct Mater, 2018, 28(17): 1706923 doi: 10.1002/adfm.201706923
|
[41] |
Lin Y, Bai Y, Fang Y J, et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J Phys Chem Lett, 2018, 9(3): 654 doi: 10.1021/acs.jpclett.7b02679
|
[42] |
Thote A, Jeon I, Lee J W, et al. Stable and reproducible 2D/3D formamidinium–lead–iodide perovskite solar cells. ACS Appl Energy Mater, 2019, 2(4): 2486 doi: 10.1021/acsaem.8b01964
|
[43] |
Lee J W, Dai Z H, Han T H, et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat Commun, 2018, 9: 3021 doi: 10.1038/s41467-018-05454-4
|
[44] |
Li M H, Yeh H S, Chiang Y H, et al. Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process. Adv Mater, 2018, 30(30): 1801401 doi: 10.1002/adma.201801401
|
[45] |
Smith I C, Hoke E T, Solis-Ibarra D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem Int Ed, 2014, 53(42): 11232 doi: 10.1002/anie.201406466
|
[46] |
Quan L N, Yuan M J, Comin R, et al. Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc, 2016, 138(8): 2649 doi: 10.1021/jacs.5b11740
|
[47] |
Seok S I, Gr?tzel M, Park N G. Methodologies toward highly efficient perovskite solar cells. Small, 2018, 14(20): 1704177 doi: 10.1002/smll.201704177
|
[48] |
Li L, Chen Y H, Liu Z H, et al. The additive coordination effect on hybrids perovskite crystallization and high-performance solar cell. Adv Mater, 2016, 28(44): 9862 doi: 10.1002/adma.201603021
|
[49] |
Huang P H, Wang Y H, Ke J C, et al. The effect of solvents on the performance of CH3NH3PbI3 perovskite solar cells. Energies, 2017, 10(5): 599 doi: 10.3390/en10050599
|
[50] |
Han F, Luo J S, Malik H A, et al. A functional sulfonic additive for high efficiency and low hysteresis perovskite solar cells. J Power Sources, 2017, 359: 577 doi: 10.1016/j.jpowsour.2017.05.084
|
[51] |
Fei C B, Li B, Zhang R, et al. Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film. Adv Energy Mater, 2017, 7(9): 1602017 doi: 10.1002/aenm.201602017
|
[52] |
Niu T Q, Lu J, Munir R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv Mater, 2018, 30(16): 1706576 doi: 10.1002/adma.201706576
|
[53] |
Li X D, Zhang W X, Wang Y C, et al. In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nat Commun, 2018, 9: 3806 doi: 10.1038/s41467-018-06204-2
|
[54] |
Feng J S, Zhu X J, Yang Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater, 2018, 30(35): 1801418 doi: 10.1002/adma.201801418
|
[55] |
Wu Y Z, Xie F X, Chen H, et al. Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv Mater, 2017, 29(28): 17011073
|
[56] |
Tavakoli M M, Bi D Q, Pan L F, et al. Adamantanes enhance the photovoltaic performance and operational stability of perovskite solar cells by effective mitigation of interfacial defect states. Adv Energy Mater, 2018, 8(19): 1800275 doi: 10.1002/aenm.201800275
|
[57] |
Tavakoli M M, Yadav P, Prochowicz D, et al. Controllable perovskite crystallization via antisolvent technique using chloride additives for highly efficient planar perovskite solar cells. Adv Energy Mater, 2019, 9(17): 1803587 doi: 10.1002/aenm.201803587
|
[58] |
Tavakoli M M, Tress W, Mili? J V, et al. Addition of adamantylammonium iodide to hole transport layers enables highly efficient and electroluminescent perovskite solar cells. Energy Environ Sci, 2018, 11(11): 3310 doi: 10.1039/C8EE02404A
|
[59] |
Li X, Yang J Y, Jiang Q H, et al. Perovskite solar cells employing an eco-friendly and low-cost inorganic hole transport layer for enhanced photovoltaic performance and operational stability. J Mater Chem A, 2019, 7(12): 7065 doi: 10.1039/C9TA01499C
|
[60] |
Kung P K, Li M H, Lin P Y, et al. A review of inorganic hole transport materials for perovskite solar cells. Adv Mater Interfaces, 2018, 5(22): 1800882 doi: 10.1002/admi.201800882
|
[61] |
Kang J S, Kim J Y, Yoon J, et al. Room-temperature vapor deposition of cobalt nitride nanofilms for mesoscopic and perovskite solar cells. Adv Energy Mater, 2018, 8(13): 1703114 doi: 10.1002/aenm.201703114
|
[62] |
Arora N, Dar M I, Hinderhofer A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 2017, 358(6364): 768 doi: 10.1126/science.aam5655
|
[63] |
Zhang H, Wang H, Chen W, et al. CuGaO2: a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Adv Mater, 2017, 29(8): 1604984 doi: 10.1002/adma.201604984
|
[64] |
Akin S, Liu Y H, Dar M I, et al. Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability. J Mater Chem A, 2018, 6(41): 20327 doi: 10.1039/C8TA07368F
|