<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
ZHU Yu, DU Chen, WANG Shuo, MA Rui-xin, WANG Cheng-yan. Research progress on the stability of perovskite solar cells[J]. Chinese Journal of Engineering, 2020, 42(1): 16-25. doi: 10.13374/j.issn2095-9389.2019.06.24.006
Citation: ZHU Yu, DU Chen, WANG Shuo, MA Rui-xin, WANG Cheng-yan. Research progress on the stability of perovskite solar cells[J]. Chinese Journal of Engineering, 2020, 42(1): 16-25. doi: 10.13374/j.issn2095-9389.2019.06.24.006

Research progress on the stability of perovskite solar cells

doi: 10.13374/j.issn2095-9389.2019.06.24.006
More Information
  • Corresponding author: E-mail: chywang@yeah.net
  • Received Date: 2019-06-24
  • Publish Date: 2020-01-01
  • In recent years, with the rapid development of new energy and industrial technologies, the solar cell industry has begun to receive considerable attention. Perovskite solar cells are regarded as the third-generation solar cells. As of April 2019, on the basis of the international certification, the maximum power conversion efficiency of perovskite solar cells is 24.2%, which is similar to the highest power conversion efficiency of silicon solar cells. Perovskite solar cells exhibit high power conversion efficiency, low cost, simple preparation, and diversity of structure, which makes them the leaders in next-generation thin-film photovoltaic devices. In this paper the development history of perovskite solar cells was reported; the perovskite crystal structure and device structure were discussed in detail; and a tolerance factor for obtaining a more stable perovskite structure was introduced. We then summarized the A-site, B-site, and X-site composition engineering, the one-step, two-step and other fabrication methods and morphology control methods of perovskite thin films that could stabilize the perovskite crystal structure, reduce the pollution and harm of lead in perovskite films, control the growth of perovskite film, and regulate the band gaps. In addition, the influencing factors on the stability of perovskite solar cells was also discuss; light stability, thermal stability, and humidity stability that are the main causes of the decomposition of perovskite crystals, resulting in a serious decrease in device performance owing to the phase transition and degradation. The biggest obstacle for the industrialization of perovskite solar cells is the stability. Finally a series of methods that can improve the stability of perovskite solar cells were analyzed. The main solutions to the current stability problems of perovskite solar cells include the development of more stable 2D/3D perovskite structures, the development of new additives to control the growth of grains using the interfacial medication methods, and the selection of suitable hole and electron transport materials with superior properties.

     

  • loading
  • [1]
    Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17): 6050 doi: 10.1021/ja809598r
    [2]
    Wang S H, Sakurai T, Wen W J, et al. Energy level alignment at interfaces in metal halide perovskite solar cells. Adv Mater Interfaces, 2018, 5(22): 1800260 doi: 10.1002/admi.201800260
    [3]
    Li Y, Ji L, Liu R G, et al. A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. J Mater Chem A, 2018, 6(27): 12842 doi: 10.1039/C8TA04120B
    [4]
    Petrus M L, Schlipf J, Li C, et al. Capturing the sun: a review of the challenges and perspectives of perovskite solar cells. Adv Energy Mater, 2017, 7(16): 1700264 doi: 10.1002/aenm.201700264
    [5]
    Gong J, Guo P J, Benjamin S E, et al. Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. J Energy Chem, 2018, 27(4): 1017 doi: 10.1016/j.jechem.2017.12.005
    [6]
    Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10): 4088 doi: 10.1039/c1nr10867k
    [7]
    Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591 doi: 10.1038/srep00591
    [8]
    Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234 doi: 10.1126/science.aaa9272
    [9]
    Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 2019, 13: 460 doi: 10.1038/s41566-019-0398-2
    [10]
    Yang S, Chen S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 2019, 365(6452): 473 doi: 10.1126/science.aax3294
    [11]
    Chen Q, De Marco N, Yang Y M, et al. Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10(3): 355 doi: 10.1016/j.nantod.2015.04.009
    [12]
    Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nat Photonics, 2014, 8: 506 doi: 10.1038/nphoton.2014.134
    [13]
    Kim H S, Im S H, Park N G. Organolead halide perovskite: new horizons in solar cell research. J Phys Chem C, 2014, 118(11): 5615 doi: 10.1021/jp409025w
    [14]
    Sum T C, Mathews N. Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ Sci, 2014, 7(8): 2518 doi: 10.1039/C4EE00673A
    [15]
    Han G F, Hadi H D, Bruno A, et al. Additive selection strategy for high performance perovskite photovoltaics. J Phys Chem C, 2017, 122(25): 13884
    [16]
    Da P M, Zheng G F. Tailoring interface of lead-halide perovskite solar cells. Nano Res, 2017, 10(5): 1471 doi: 10.1007/s12274-016-1405-2
    [17]
    Gholipour S, Saliba M. From exceptional properties to stability challenges of perovskite solar cells. Small, 2018, 14(46): 1802385 doi: 10.1002/smll.201802385
    [18]
    Pang S P, Hu H, Zhang J L, et al. NH2CH═NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem Mater, 2014, 26(3): 1485 doi: 10.1021/cm404006p
    [19]
    Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517(7535): 476 doi: 10.1038/nature14133
    [20]
    Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9(6): 1989 doi: 10.1039/C5EE03874J
    [21]
    Shi Z J, Guo J, Chen Y H, et al. Lead-free organic?inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv Mater, 2017, 29(16): 1605005 doi: 10.1002/adma.201605005
    [22]
    Jokar E, Chien C H, Fathi A, et al. Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ Sci, 2018, 11(9): 2353 doi: 10.1039/C8EE00956B
    [23]
    Xiao Z W, Song Z N, Yan Y F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv Mater, 2019, 31(47): 1803792 doi: 10.1002/adma.201803792
    [24]
    Li M, Wang Z K, Zhuo M P, et al. Pb–Sn?Cu ternary organometallic halide perovskite solar cells. Adv Mater, 2018, 30(20): 1800258 doi: 10.1002/adma.201800258
    [25]
    Saliba M, Correa-Baena J P, Gr?tzel M, et al. Perovskite solar cells: from the atomic level to film quality and device performance. Angew Chem Int Ed, 2018, 57(10): 2554 doi: 10.1002/anie.201703226
    [26]
    Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7(3): 982 doi: 10.1039/c3ee43822h
    [27]
    Chen Q, Zhou H P, Fang Y H, et al. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat Commun, 2015, 6: 7269 doi: 10.1038/ncomms8269
    [28]
    Conings B, Drijkoningen J, Gauquelin N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater, 2015, 5(15): 1500477 doi: 10.1002/aenm.201500477
    [29]
    Huang J B, Tan S Q, Lund P D, et al. Impact of H2O on organic–inorganic hybrid perovskite solar cells. Energy Environ Sci, 2017, 10(11): 2284 doi: 10.1039/C7EE01674C
    [30]
    Eperon G E, Habisreutinger S N, Leijtens T, et al. The importance of moisture in hybrid lead halide perovskite thin film fabrication. ACS Nano, 2015, 9(9): 9380 doi: 10.1021/acsnano.5b03626
    [31]
    Fu Q X, Tang X L, Huang B, et al. Recent progress on the long-term stability of perovskite solar cells. Adv Sci, 2018, 5(5): 1700387 doi: 10.1002/advs.201700387
    [32]
    Jeon N J, Na H, Jung E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy, 2018, 3: 682 doi: 10.1038/s41560-018-0200-6
    [33]
    Zhang C X, Deng X S, Zheng J F, et al. Solution-synthesized SnO2 nanorod arrays for highly stable and efficient perovskite solar cells. Electrochim Acta, 2018, 283: 1134 doi: 10.1016/j.electacta.2018.07.028
    [34]
    Tavakoli M M, Yadav P, Tavakoli R, et al. Surface engineering of TiO2 ETL for highly efficient and hysteresis?less planar perovskite solar cell (21.4%) with enhanced open?circuit voltage and stability. Adv Energy Mater, 2018, 8(23): 1800794 doi: 10.1002/aenm.201800794
    [35]
    Mahmoudi T, Wang Y S, Hahn Y B. Stability enhancement in perovskite solar cells with perovskite/silver–graphene composites in the active layer. ACS Energy Lett, 2019, 4(1): 235 doi: 10.1021/acsenergylett.8b02201
    [36]
    Li Z, Xiao C X, Yang Y, et al. Extrinsic ion migration in perovskite solar cells. Energy Environ Sci, 2017, 10(5): 1234 doi: 10.1039/C7EE00358G
    [37]
    Wei D, Ma F S, Wang R, et al. Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells. Adv Mater, 2018, 30(31): 1707583 doi: 10.1002/adma.201707583
    [38]
    Liu L, Huang S, Lu Y, et al. Grain-boundary “patches” by in situ conversion to enhance perovskite solar cells stability. Adv Mater, 2018, 30(29): 1800544 doi: 10.1002/adma.201800544
    [39]
    Tsai H, Asadpour R, Blancon J C, et al. Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat Commun, 2018, 9: 2130 doi: 10.1038/s41467-018-04430-2
    [40]
    Chen P, Bai Y, Wang S C, et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv Funct Mater, 2018, 28(17): 1706923 doi: 10.1002/adfm.201706923
    [41]
    Lin Y, Bai Y, Fang Y J, et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J Phys Chem Lett, 2018, 9(3): 654 doi: 10.1021/acs.jpclett.7b02679
    [42]
    Thote A, Jeon I, Lee J W, et al. Stable and reproducible 2D/3D formamidinium–lead–iodide perovskite solar cells. ACS Appl Energy Mater, 2019, 2(4): 2486 doi: 10.1021/acsaem.8b01964
    [43]
    Lee J W, Dai Z H, Han T H, et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat Commun, 2018, 9: 3021 doi: 10.1038/s41467-018-05454-4
    [44]
    Li M H, Yeh H S, Chiang Y H, et al. Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process. Adv Mater, 2018, 30(30): 1801401 doi: 10.1002/adma.201801401
    [45]
    Smith I C, Hoke E T, Solis-Ibarra D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem Int Ed, 2014, 53(42): 11232 doi: 10.1002/anie.201406466
    [46]
    Quan L N, Yuan M J, Comin R, et al. Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc, 2016, 138(8): 2649 doi: 10.1021/jacs.5b11740
    [47]
    Seok S I, Gr?tzel M, Park N G. Methodologies toward highly efficient perovskite solar cells. Small, 2018, 14(20): 1704177 doi: 10.1002/smll.201704177
    [48]
    Li L, Chen Y H, Liu Z H, et al. The additive coordination effect on hybrids perovskite crystallization and high-performance solar cell. Adv Mater, 2016, 28(44): 9862 doi: 10.1002/adma.201603021
    [49]
    Huang P H, Wang Y H, Ke J C, et al. The effect of solvents on the performance of CH3NH3PbI3 perovskite solar cells. Energies, 2017, 10(5): 599 doi: 10.3390/en10050599
    [50]
    Han F, Luo J S, Malik H A, et al. A functional sulfonic additive for high efficiency and low hysteresis perovskite solar cells. J Power Sources, 2017, 359: 577 doi: 10.1016/j.jpowsour.2017.05.084
    [51]
    Fei C B, Li B, Zhang R, et al. Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film. Adv Energy Mater, 2017, 7(9): 1602017 doi: 10.1002/aenm.201602017
    [52]
    Niu T Q, Lu J, Munir R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv Mater, 2018, 30(16): 1706576 doi: 10.1002/adma.201706576
    [53]
    Li X D, Zhang W X, Wang Y C, et al. In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nat Commun, 2018, 9: 3806 doi: 10.1038/s41467-018-06204-2
    [54]
    Feng J S, Zhu X J, Yang Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater, 2018, 30(35): 1801418 doi: 10.1002/adma.201801418
    [55]
    Wu Y Z, Xie F X, Chen H, et al. Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv Mater, 2017, 29(28): 17011073
    [56]
    Tavakoli M M, Bi D Q, Pan L F, et al. Adamantanes enhance the photovoltaic performance and operational stability of perovskite solar cells by effective mitigation of interfacial defect states. Adv Energy Mater, 2018, 8(19): 1800275 doi: 10.1002/aenm.201800275
    [57]
    Tavakoli M M, Yadav P, Prochowicz D, et al. Controllable perovskite crystallization via antisolvent technique using chloride additives for highly efficient planar perovskite solar cells. Adv Energy Mater, 2019, 9(17): 1803587 doi: 10.1002/aenm.201803587
    [58]
    Tavakoli M M, Tress W, Mili? J V, et al. Addition of adamantylammonium iodide to hole transport layers enables highly efficient and electroluminescent perovskite solar cells. Energy Environ Sci, 2018, 11(11): 3310 doi: 10.1039/C8EE02404A
    [59]
    Li X, Yang J Y, Jiang Q H, et al. Perovskite solar cells employing an eco-friendly and low-cost inorganic hole transport layer for enhanced photovoltaic performance and operational stability. J Mater Chem A, 2019, 7(12): 7065 doi: 10.1039/C9TA01499C
    [60]
    Kung P K, Li M H, Lin P Y, et al. A review of inorganic hole transport materials for perovskite solar cells. Adv Mater Interfaces, 2018, 5(22): 1800882 doi: 10.1002/admi.201800882
    [61]
    Kang J S, Kim J Y, Yoon J, et al. Room-temperature vapor deposition of cobalt nitride nanofilms for mesoscopic and perovskite solar cells. Adv Energy Mater, 2018, 8(13): 1703114 doi: 10.1002/aenm.201703114
    [62]
    Arora N, Dar M I, Hinderhofer A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 2017, 358(6364): 768 doi: 10.1126/science.aam5655
    [63]
    Zhang H, Wang H, Chen W, et al. CuGaO2: a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Adv Mater, 2017, 29(8): 1604984 doi: 10.1002/adma.201604984
    [64]
    Akin S, Liu Y H, Dar M I, et al. Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability. J Mater Chem A, 2018, 6(41): 20327 doi: 10.1039/C8TA07368F
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)

    Article views (3502) PDF downloads(463) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频