Citation: | PENG Liang-gui, WANG Deng-gang, LI Jie, XING Jun-fang, GONG Dian-yao. Data-driven adaptive setting algorithm for coiling temperature model parameter[J]. Chinese Journal of Engineering, 2020, 42(6): 778-786. doi: 10.13374/j.issn2095-9389.2019.06.12.002 |
[1] |
李維剛, 徐文勝, 馬威, 等. 基于熱連軋實測數據的模型鋼族層別優化. 鋼鐵, 2018, 53(10):54
Li W G, Xu W S, Ma W, et al. Optimization for steel grade family of model based on measured data during hot continuous rolling. Iron Steel, 2018, 53(10): 54
|
[2] |
張殿華, 彭文, 孫杰, 等. 板帶軋制過程中的智能化關鍵技術. 鋼鐵研究學報, 2019, 31(2):174
Zhang D H, Peng W, Sun J, et al. Key intelligent technologies of steel strip rolling process. J Iron Steel Res, 2019, 31(2): 174
|
[3] |
李維剛, 鄧肯, 趙云濤, 等. 基于連續曲面的軋制模型自學習方法. 鋼鐵, 2017, 52(12):61
Li W G, Deng K, Zhao Y T, et al. Self-learning method for rolling model based on continuous surface. Iron Steel, 2017, 52(12): 61
|
[4] |
劉相華, 趙啟林, 黃貞益. 人工智能在軋制領域中的應用進展. 軋鋼, 2017, 34(4):1
Liu X H, Zhao Q L, Huang Z Y. Prospect of artificial intelligent application in rolling. Steel Roll, 2017, 34(4): 1
|
[5] |
Edalatpour S, Saboonchi A, Hassanpour S. Effect of phase transformation latent heat on prediction accuracy of strip laminar cooling. J Mater Process Tech, 2011, 211: 1776 doi: 10.1016/j.jmatprotec.2011.05.027
|
[6] |
Hashimoto T, Yoshioka Y, Ohtsuka T. Model predictive control for hot strip mill cooling system //2010 IEEE International Conference on Control Applications. Yokohama, 2010: 646
|
[7] |
徐小青, 郝曉東, 傅松林, 等. 基于溫度觀測器的層流冷卻路徑控制. 鋼鐵研究學報, 2017, 29(1):81
Xu X Q, Hao X D, Fu S L, et al. Cooling route control based on temperature observer for laminar cooling process. J Iron Steel Res, 2017, 29(1): 81
|
[8] |
宋勇, 荊豐偉, 殷實, 等. 厚規格熱軋帶鋼高精度卷取溫度控制模型. 工程科學學報, 2015, 37(1):106
Song Y, Jing F W, Yin S, et al. High-precision coiling temperature control model for heavy gauge strip steel. Chin J Eng, 2015, 37(1): 106
|
[9] |
Schlang M, Lang B, Poppe T, et al. Current and future development in neural computation in steel processing. Control Eng Pract, 2001, 9(9): 975 doi: 10.1016/S0967-0661(01)00086-7
|
[10] |
韓斌, 彭良貴, 王國棟, 等. 基于神經網絡的熱帶層流基本熱流密度的計算. 鋼鐵, 2004, 39(3):29 doi: 10.3321/j.issn:0449-749X.2004.03.008
Han B, Peng L G, Wang G D, et al. Calculation of basic heat-flux density for hot strip laminar cooling system using artificial neural networks. Iron Steel, 2004, 39(3): 29 doi: 10.3321/j.issn:0449-749X.2004.03.008
|
[11] |
孫鐵軍, 楊衛東, 程艷明, 等. 帶鋼層流冷卻系統多目標優化策略的研究. 控制工程, 2016, 23(1):117
Sun T J, Yang W D, Cheng Y M, et al. Study on multi-objective optimization strategy of strip steel laminar-cooling system. Control Eng China, 2016, 23(1): 117
|
[12] |
Jeong S Y, Lee M, Lee S Y, et al. Improving lookup table control of a hot coil strip process with online retrained RBF network. IEEE Trans Ind Electron, 2000, 47(3): 679 doi: 10.1109/41.847908
|
[13] |
范曉明, 張利, 蔡曉輝, 等. 小腦模型連接控制(CMAC)網絡用于熱軋帶鋼卷取溫度控制. 東北大學學報: 自然科學版, 2000, 21(6):662
Fan X M, Zhang L, Cai X H, et al. Hot strip coiling temperature control based on CMAC network. J Northeast Univ Nat Sci, 2000, 21(6): 662
|
[14] |
孫鐵軍, 楊衛東, 程艷明, 等. 用改進遺傳算法優化的帶鋼卷取溫度預報模型. 控制理論與應用, 2015, 32(8):1106 doi: 10.7641/CTA.2015.50041
Sun T J, Yang W D, Cheng Y M, et al. Improved genetic algorithm for optimizing prediction model of strip coiling temperature. Control Theory Appl, 2015, 32(8): 1106 doi: 10.7641/CTA.2015.50041
|
[15] |
Pian J X, Zhu Y L. A hybrid soft sensor for measuring hot-rolled strip temperature in the laminar cooling process. Neurocomputing, 2015, 169: 457 doi: 10.1016/j.neucom.2014.09.089
|
[16] |
Sato Y, Izui K, Yamada T, et al. Data mining based on clustering and association rule analysis for knowledge discovery in multi-objective topology optimization. Expert Syst Appl, 2019, 119: 247 doi: 10.1016/j.eswa.2018.10.047
|
[17] |
何安瑞, 邵健, 孫文權, 等. 適應智能制造的軋制精準控制關鍵技術. 冶金自動化, 2016, 40(5):1
He A R, Shao J, Sun W Q, et al. Key precise control technologies of rolling for smart manufacturing. Metall Ind Autom, 2016, 40(5): 1
|