Citation: | HU Yang, XIE Xin, SUN Chun-bao, KOU Jue. Study of the intercalation mechanisms of surfactants with different molecular structures on mildly oxidized graphite[J]. Chinese Journal of Engineering, 2020, 42(1): 84-90. doi: 10.13374/j.issn2095-9389.2019.06.03.001 |
[1] |
Novoselov K S, Fal'ko V I, Colombo L, et al. A roadmap for graphene. Nature, 2012, 490: 192 doi: 10.1038/nature11458
|
[2] |
Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442(7100): 282 doi: 10.1038/nature04969
|
[3] |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
|
[4] |
Hu Y, Li Z, Li H Q, et al. Roles of hydrocarbon chain-length in preparing graphene oxide from mildly?oxidized graphite with intercalating anionic aliphatic surfactants. RSC Adv, 2016, 6(18): 14859 doi: 10.1039/C5RA27089H
|
[5] |
Sun J J, Yang N X, Sun Z, et al. Fully converting graphite into graphene oxide hydrogels by preoxidation with impure manganese dioxide. ACS Appl Mater Interfaces, 2015, 7(38): 21356 doi: 10.1021/acsami.5b06008
|
[6] |
Hong Y Z, Wang Z Y, Jin X B. Sulfuric acid intercalated graphite oxide for graphene preparation. Sci Rep, 2013, 3: 3439 doi: 10.1038/srep03439
|
[7] |
Kim J W, Kang D, Kim T H, et al. Mosaic-like monolayer of graphene oxide sheets decorated with tetrabutylammonium ions. ACS Nano, 2013, 7(9): 8082 doi: 10.1021/nn403363s
|
[8] |
Xu J, Dou Y, Wei Z, et al. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)?ion batteries. Adv Sci, 2017, 4(10): 1700146 doi: 10.1002/advs.201700146
|
[9] |
姚軍, 孫麗美, 高飛. 部分氧化法制備插層石墨/Mn3O4復合材料及其電化學性能研究. 化工新型材料, 2016, 44(12):40
Yao J, Sun L M, Gao F. Synthesis and electrochemical property of intercalary graphite/Mn3O4 composite material prepared by partial oxidation. New Chem Mater, 2016, 44(12): 40
|
[10] |
姚理榮, 董莉, 李小娟, 等. TiO2插層氧化石墨烯降解亞甲基藍性能研究. 上海紡織科技, 2018, 46(11):58
Yao L R, Dong L, Li X J, et al. Photocatalytic performance of TiO2-intercalated graphene oxide toward methylene blue. Shanghai Textile Sci Technol, 2018, 46(11): 58
|
[11] |
Hummers Jr W S, Offeman R E. Preparation of graphitic oxide. J Am Chem Soc, 1958, 80(6): 1339 doi: 10.1021/ja01539a017
|
[12] |
Hu Y, Song S X, Lopez-Valdivieso A. Effects of oxidation on the defect of reduced graphene oxides in graphene preparation. J Colloid Interface Sci, 2015, 450: 68 doi: 10.1016/j.jcis.2015.02.059
|
[13] |
Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8): 4806 doi: 10.1021/nn1006368
|
[14] |
Pei S F, Cheng H M. The reduction of graphene oxide. Carbon, 2012, 50(9): 3210 doi: 10.1016/j.carbon.2011.11.010
|
[15] |
Stevens J S, Byard S J, Seaton C C, et al. Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid–base complexes. Phys Chem Chem Phys, 2014, 16(3): 1150 doi: 10.1039/C3CP53907E
|
[16] |
Kudin K N, Ozbas B, Schniepp H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett, 2008, 8(1): 36 doi: 10.1021/nl071822y
|