Citation: | YANG Hai-long, HU Zi-jun, SUN Chen-cheng, HU Sheng-bo, YANG Jing-xing. Pore structure of nano-porous thermal insulating materials and thermal transport via gas phase in their pores[J]. Chinese Journal of Engineering, 2019, 41(6): 788-796. doi: 10.13374/j.issn2095-9389.2019.06.011 |
[1] |
Bouquerel M, Duforestel T, Baillis D, et al. Heat transfer modeling in vacuum insulation panels containing nanoporous silicas-a review. Energy Build, 2012, 54: 320 doi: 10.1016/j.enbuild.2012.07.034
|
[2] |
胡子君, 李俊寧, 孫陳誠, 等. 納米超級隔熱材料及其最新研究進展. 中國材料進展, 2012, 31(8): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201208009.htm
Hu Z J, Li J N, Sun C C, et al. Recent developments of nano-superinsulating materials. Mater China, 2012, 31(8): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201208009.htm
|
[3] |
Koebel M, Rigacci A, Achard P. Aerogel-based thermal superinsulation: an overview. J Sol-Gel Sci Technol, 2012, 63(3): 315 doi: 10.1007/s10971-012-2792-9
|
[4] |
陳德平, 侯柯屹, 王立佳, 等. 超級絕熱型防火材料的研究進展及其在城市地下空間的應用展望. 工程科學學報, 2017, 39(6): 811 doi: 10.13374/j.issn2095-9389.2017.06.001
Chen D P, Hou K Y, Wang L J, et al. Status and development of fire protection materials based on super thermal insulator and their application prospect in urban underground space. Chin J Eng, 2017, 39(6): 811 doi: 10.13374/j.issn2095-9389.2017.06.001
|
[5] |
Hüsing N, Schubert U. Aerogels-airy materials: chemistry, structure, and properties. Angew Chem Int Ed, 1998, 37(1-2): 22 doi: 10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
|
[6] |
Qiao J H, Bolot R, Liao H L, et al. Knudsen effect on the estimation of the effective thermal conductivity of thermal barrier coatings. J Therm Spray Technol, 2013, 22(2-3): 175 doi: 10.1007/s11666-012-9878-3
|
[7] |
Spagnol S, Lartigue B, Trombe A, et al. Experimental investigations on the thermal conductivity of silica aerogels by a guarded thin-film-heater method. J Heat Transfer, 2009, 131(7): 074501-1 doi: 10.1115/1.3089547
|
[8] |
朱傳勇, 李增耀, 趙新朋, 等. 納米尺度下氣體導熱的DSMC模擬. 工程熱物理學報, 2016, 37(5): 1027 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201605020.htm
Zhu C Y, Li Z Y, Zhao X P, et al. The DSMC study on gas heat conduction in nanoscale. J Eng Thermophys, 2016, 37(5): 1027 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201605020.htm
|
[9] |
Swimm K, Reichenauer G, Vidi S, et al. Gas pressure dependence of the heat transport in porous solids with pores smaller than 10μm. Int J Thermophys, 2009, 30(4): 1329 doi: 10.1007/s10765-009-0617-z
|
[10] |
Reichenauer G, Heinemann U, Ebert H P. Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Colloids Surf A, 2007, 300(1-2): 204 doi: 10.1016/j.colsurfa.2007.01.020
|
[11] |
張虎, 李增耀, 丹聃, 等. 氣氛壓力對納米多孔材料等效熱導率的影響. 工程熱物理學報, 2013, 34(4): 756 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201304041.htm
Zhang H, Li Z Y, Dan D, et al. The influence of gas pressure on the effective thermal conductivity of nano-porous material. J Eng Thermophys, 2013, 34(4): 756 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201304041.htm
|
[12] |
Zhao J J, Duan Y Y, Wang X D, et al. Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels. J Nanopart Res, 2012, 14(8): 1024 doi: 10.1007/s11051-012-1024-0
|
[13] |
何雅玲, 謝濤. 氣凝膠納米多孔材料傳熱計算模型研究進展. 科學通報, 2015, 60(2): 137 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201502003.htm
He Y L, Xie T. A review of heat transfer models of nanoporous silica aerogel insulation material. Chin Sci Bull, 2015, 60(2): 137 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201502003.htm
|
[14] |
朱傳勇, 李增耀. 氣凝膠中氣相貢獻熱導率的數值求解. 工程熱物理學報, 2017, 38(8): 1753 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201708027.htm
Zhu C Y, Li Z Y. The numerical study on the gas-contributed thermal conductivity of aerogel. J Eng Thermophys, 2017, 38(8): 1753 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201708027.htm
|
[15] |
Coquil T, Fang J, Pilon L. Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica. Int J Heat Mass Transfer, 2011, 54(21-22): 4540 doi: 10.1016/j.ijheatmasstransfer.2011.06.024
|
[16] |
Raed K, Gross U. Modeling of influence of gas atmosphere and pore-size distribution on the effective thermal conductivity of knudsen and non-knudsen porous materials. Int J Thermophys, 2009, 30(4): 1343 doi: 10.1007/s10765-009-0600-8
|
[17] |
楊海龍, 王曉婷, 王欽, 等. 壓汞和氣體吸附在納米超級隔熱材料孔隙結構表征中的應用研究. 復合材料學報, 2013, 30(增刊): 273 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1052.htm
Yang H L, Wang X T, Wang Q, et al. Study on mercury porosimetry and gas sorption for pore structure characterization of nano-porous super thermal insulating materials. Acta Mater Compos Sin, 2013, 30(Suppl): 273 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1052.htm
|
[18] |
Pirard R, Rigacci A, Marechal J C, et al. Characterization of hyperporous polyurethane-based gels by non-intrusive mercury porosimetry. Polymer, 2003, 44(17): 4881 doi: 10.1016/S0032-3861(03)00481-6
|
[19] |
Pirard R, Alie C, Pirard J P. Characterization of porous texture of hyperporous materials by mercury porosimetry using densification equation. Powder Technol, 2002, 128(2-3): 242 doi: 10.1016/S0032-5910(02)00185-7
|
[20] |
Alie C, Pirard R, Pirard J P. Mercury porosimetry: applicability of the bucking-intrusion mechanism to low-density xerogels. J Non-Cryst Solids, 2001, 292(1-3): 138 doi: 10.1016/S0022-3093(01)00881-X
|
[21] |
Wiener M, Reichenauer G, Braxmeier S, et al. Carbon aerogelbased high-temperature thermal insulation. Int J Thermophys, 2009, 30(4): 1372 doi: 10.1007/s10765-009-0595-1
|
[22] |
畢成, 唐桂華. 多孔材料氣凝膠氣固耦合傳熱研究. 工程熱物理學報, 2015, 36(6): 1315 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201506032.htm
Bi C, Tang G H. Study of coupling heat transfer between solid and gas phases in nanoporous aerogel. J Eng Thermophys, 2015, 36(6): 1315 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201506032.htm
|
[23] |
趙俊杰, 于海童, 段遠源, 等. 基于微觀結構的氣凝膠熱導率分析. 工程熱物理學報, 2013, 34(10): 1926 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201310031.htm
Zhao J J, Yu H T, Duan Y Y, et al. Analysis of aerogel thermal conductivity based on the microstructure. J Eng Thermophys, 2013, 34(10): 1926 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201310031.htm
|
[24] |
Zhao J J, Duan Y Y, Wang X D, et al. A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure. J Non-Cryst Solids, 2012, 358(10): 1287 doi: 10.1016/j.jnoncrysol.2012.02.035
|
[25] |
Li Z Y, Zhu C Y, Zhao X P. A theoretical and numerical study on the gas-contributed thermal conductivity in aerogel. Int J Heat Mass Transfer, 2017, 108: 1982 doi: 10.1016/j.ijheatmasstransfer.2017.01.051
|
[26] |
Bi C, Tang G H, Hu Z J, et al. Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation. Int J Heat Mass Transfer, 2014, 79: 126 doi: 10.1016/j.ijheatmasstransfer.2014.07.098
|
[27] |
Lee O J, Lee K H, Yim T J, et al. Determination of mesopore size of aerogels from thermal conductivity measurements. J NonCryst Solids, 2002, 298(2-3): 287 doi: 10.1016/S0022-3093(01)01041-9
|
[28] |
Tamon H, Kitamura T, Okazaki M. Preparation of silica aerogel from TEOS. J Colloid Interface Sci, 1998, 197(2): 353 doi: 10.1006/jcis.1997.5269
|
[29] |
Swimm K, Vidi S, Reichenauer G, et al. Coupling of gaseous and solid thermal conduction in porous solids. J Non-Cryst Solids, 2017, 456: 114 doi: 10.1016/j.jnoncrysol.2016.11.012
|