<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
YANG Hai-long, HU Zi-jun, SUN Chen-cheng, HU Sheng-bo, YANG Jing-xing. Pore structure of nano-porous thermal insulating materials and thermal transport via gas phase in their pores[J]. Chinese Journal of Engineering, 2019, 41(6): 788-796. doi: 10.13374/j.issn2095-9389.2019.06.011
Citation: YANG Hai-long, HU Zi-jun, SUN Chen-cheng, HU Sheng-bo, YANG Jing-xing. Pore structure of nano-porous thermal insulating materials and thermal transport via gas phase in their pores[J]. Chinese Journal of Engineering, 2019, 41(6): 788-796. doi: 10.13374/j.issn2095-9389.2019.06.011

Pore structure of nano-porous thermal insulating materials and thermal transport via gas phase in their pores

doi: 10.13374/j.issn2095-9389.2019.06.011
More Information
  • Corresponding author: YANG Hai-long, E-mail: yhl20032003@126.com
  • Received Date: 2018-06-11
  • Publish Date: 2019-06-01
  • The thermal insulation properties of nano-porous thermal insulating materials largely depend on thermal transport via gas phase within their pores, and this process relies on their pore structures. Therefore, investigating pore structures and thermal transport via gas phase is important to understand the heat transfer mechanism. Current research mainly focuses on the theoretical calculation and analysis from the perspective of heat transfer, and special and systematic studies based on actual materials have not been reported yet. In addition, accurate analysis of pore structures using usual techniques is difficult due to the complex pore network and the poor mechanical properties of their solid skeleton. In this study, nano-porous thermal insulating materials with different pore structures were synthesized via a sol-gel process followed by supercritical drying. The materials were then characterized by thermal conductivity tester, nitrogen adsorption-desorption, and helium pycnometer. The pore structures of the resulting materials were obtained, and the relationship between pore structures and thermal transport via gas phase was studied. Results show that the bimodal distribution of pores in the resulting materials, corresponding to gas-contributed thermal conductivity. All pores within the resulting materials can be equivalent to pores with a single diameter when the equivalent size of large pores is 10 times less than that of small pores. Similar to the pure gaseous thermal conductivity, the intrinsic gas-contributed thermal conductivity including gas-solid coupling effects rises with increasing pore diameter of the materials. The ratio of intrinsic gas-contributed thermal conductivity to pure gaseous thermal conductivity is 2.0, 1.5, and 2.0-1.5 for pores smaller than 200 nm, larger than 500 nm, and with size between 200 and 500 nm, respectively. When the equivalent size of large pores is 10 times less than that of small pores or when the equivalent size of large pores is 100-1000 times that of small pores and the contribution of large pores to the total porosity is less than 10%, the gas-contributed thermal conductivity reduction of the resulting material with decreasing gas pressure can be divided into three stages (steep decreasing stage, slow decreasing stage, and hardly changing stage) according to decreasing rate. When the equivalent size of large pores is 3000 times larger than that of small pores, the gas-contributed thermal conductivity reduction of the resulting material with decreasing gas pressure can be divided into four stages (steep decreasing stage, slow decreasing stage, steep decreasing stage, and hardly changing stage) even if the contribution of large pores to the total porosity is very low (less than 10%).

     

  • loading
  • [1]
    Bouquerel M, Duforestel T, Baillis D, et al. Heat transfer modeling in vacuum insulation panels containing nanoporous silicas-a review. Energy Build, 2012, 54: 320 doi: 10.1016/j.enbuild.2012.07.034
    [2]
    胡子君, 李俊寧, 孫陳誠, 等. 納米超級隔熱材料及其最新研究進展. 中國材料進展, 2012, 31(8): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201208009.htm

    Hu Z J, Li J N, Sun C C, et al. Recent developments of nano-superinsulating materials. Mater China, 2012, 31(8): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201208009.htm
    [3]
    Koebel M, Rigacci A, Achard P. Aerogel-based thermal superinsulation: an overview. J Sol-Gel Sci Technol, 2012, 63(3): 315 doi: 10.1007/s10971-012-2792-9
    [4]
    陳德平, 侯柯屹, 王立佳, 等. 超級絕熱型防火材料的研究進展及其在城市地下空間的應用展望. 工程科學學報, 2017, 39(6): 811 doi: 10.13374/j.issn2095-9389.2017.06.001

    Chen D P, Hou K Y, Wang L J, et al. Status and development of fire protection materials based on super thermal insulator and their application prospect in urban underground space. Chin J Eng, 2017, 39(6): 811 doi: 10.13374/j.issn2095-9389.2017.06.001
    [5]
    Hüsing N, Schubert U. Aerogels-airy materials: chemistry, structure, and properties. Angew Chem Int Ed, 1998, 37(1-2): 22 doi: 10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
    [6]
    Qiao J H, Bolot R, Liao H L, et al. Knudsen effect on the estimation of the effective thermal conductivity of thermal barrier coatings. J Therm Spray Technol, 2013, 22(2-3): 175 doi: 10.1007/s11666-012-9878-3
    [7]
    Spagnol S, Lartigue B, Trombe A, et al. Experimental investigations on the thermal conductivity of silica aerogels by a guarded thin-film-heater method. J Heat Transfer, 2009, 131(7): 074501-1 doi: 10.1115/1.3089547
    [8]
    朱傳勇, 李增耀, 趙新朋, 等. 納米尺度下氣體導熱的DSMC模擬. 工程熱物理學報, 2016, 37(5): 1027 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201605020.htm

    Zhu C Y, Li Z Y, Zhao X P, et al. The DSMC study on gas heat conduction in nanoscale. J Eng Thermophys, 2016, 37(5): 1027 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201605020.htm
    [9]
    Swimm K, Reichenauer G, Vidi S, et al. Gas pressure dependence of the heat transport in porous solids with pores smaller than 10μm. Int J Thermophys, 2009, 30(4): 1329 doi: 10.1007/s10765-009-0617-z
    [10]
    Reichenauer G, Heinemann U, Ebert H P. Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Colloids Surf A, 2007, 300(1-2): 204 doi: 10.1016/j.colsurfa.2007.01.020
    [11]
    張虎, 李增耀, 丹聃, 等. 氣氛壓力對納米多孔材料等效熱導率的影響. 工程熱物理學報, 2013, 34(4): 756 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201304041.htm

    Zhang H, Li Z Y, Dan D, et al. The influence of gas pressure on the effective thermal conductivity of nano-porous material. J Eng Thermophys, 2013, 34(4): 756 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201304041.htm
    [12]
    Zhao J J, Duan Y Y, Wang X D, et al. Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels. J Nanopart Res, 2012, 14(8): 1024 doi: 10.1007/s11051-012-1024-0
    [13]
    何雅玲, 謝濤. 氣凝膠納米多孔材料傳熱計算模型研究進展. 科學通報, 2015, 60(2): 137 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201502003.htm

    He Y L, Xie T. A review of heat transfer models of nanoporous silica aerogel insulation material. Chin Sci Bull, 2015, 60(2): 137 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201502003.htm
    [14]
    朱傳勇, 李增耀. 氣凝膠中氣相貢獻熱導率的數值求解. 工程熱物理學報, 2017, 38(8): 1753 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201708027.htm

    Zhu C Y, Li Z Y. The numerical study on the gas-contributed thermal conductivity of aerogel. J Eng Thermophys, 2017, 38(8): 1753 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201708027.htm
    [15]
    Coquil T, Fang J, Pilon L. Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica. Int J Heat Mass Transfer, 2011, 54(21-22): 4540 doi: 10.1016/j.ijheatmasstransfer.2011.06.024
    [16]
    Raed K, Gross U. Modeling of influence of gas atmosphere and pore-size distribution on the effective thermal conductivity of knudsen and non-knudsen porous materials. Int J Thermophys, 2009, 30(4): 1343 doi: 10.1007/s10765-009-0600-8
    [17]
    楊海龍, 王曉婷, 王欽, 等. 壓汞和氣體吸附在納米超級隔熱材料孔隙結構表征中的應用研究. 復合材料學報, 2013, 30(增刊): 273 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1052.htm

    Yang H L, Wang X T, Wang Q, et al. Study on mercury porosimetry and gas sorption for pore structure characterization of nano-porous super thermal insulating materials. Acta Mater Compos Sin, 2013, 30(Suppl): 273 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1052.htm
    [18]
    Pirard R, Rigacci A, Marechal J C, et al. Characterization of hyperporous polyurethane-based gels by non-intrusive mercury porosimetry. Polymer, 2003, 44(17): 4881 doi: 10.1016/S0032-3861(03)00481-6
    [19]
    Pirard R, Alie C, Pirard J P. Characterization of porous texture of hyperporous materials by mercury porosimetry using densification equation. Powder Technol, 2002, 128(2-3): 242 doi: 10.1016/S0032-5910(02)00185-7
    [20]
    Alie C, Pirard R, Pirard J P. Mercury porosimetry: applicability of the bucking-intrusion mechanism to low-density xerogels. J Non-Cryst Solids, 2001, 292(1-3): 138 doi: 10.1016/S0022-3093(01)00881-X
    [21]
    Wiener M, Reichenauer G, Braxmeier S, et al. Carbon aerogelbased high-temperature thermal insulation. Int J Thermophys, 2009, 30(4): 1372 doi: 10.1007/s10765-009-0595-1
    [22]
    畢成, 唐桂華. 多孔材料氣凝膠氣固耦合傳熱研究. 工程熱物理學報, 2015, 36(6): 1315 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201506032.htm

    Bi C, Tang G H. Study of coupling heat transfer between solid and gas phases in nanoporous aerogel. J Eng Thermophys, 2015, 36(6): 1315 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201506032.htm
    [23]
    趙俊杰, 于海童, 段遠源, 等. 基于微觀結構的氣凝膠熱導率分析. 工程熱物理學報, 2013, 34(10): 1926 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201310031.htm

    Zhao J J, Yu H T, Duan Y Y, et al. Analysis of aerogel thermal conductivity based on the microstructure. J Eng Thermophys, 2013, 34(10): 1926 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201310031.htm
    [24]
    Zhao J J, Duan Y Y, Wang X D, et al. A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure. J Non-Cryst Solids, 2012, 358(10): 1287 doi: 10.1016/j.jnoncrysol.2012.02.035
    [25]
    Li Z Y, Zhu C Y, Zhao X P. A theoretical and numerical study on the gas-contributed thermal conductivity in aerogel. Int J Heat Mass Transfer, 2017, 108: 1982 doi: 10.1016/j.ijheatmasstransfer.2017.01.051
    [26]
    Bi C, Tang G H, Hu Z J, et al. Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation. Int J Heat Mass Transfer, 2014, 79: 126 doi: 10.1016/j.ijheatmasstransfer.2014.07.098
    [27]
    Lee O J, Lee K H, Yim T J, et al. Determination of mesopore size of aerogels from thermal conductivity measurements. J NonCryst Solids, 2002, 298(2-3): 287 doi: 10.1016/S0022-3093(01)01041-9
    [28]
    Tamon H, Kitamura T, Okazaki M. Preparation of silica aerogel from TEOS. J Colloid Interface Sci, 1998, 197(2): 353 doi: 10.1006/jcis.1997.5269
    [29]
    Swimm K, Vidi S, Reichenauer G, et al. Coupling of gaseous and solid thermal conduction in porous solids. J Non-Cryst Solids, 2017, 456: 114 doi: 10.1016/j.jnoncrysol.2016.11.012
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (1200) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频