Citation: | YUAN Jing-jun, JI Zhong-shuo, ZHANG Mai-cang. Correlation between structure and orientation of TC17 titanium alloy during thermal deformation and heat treatment[J]. Chinese Journal of Engineering, 2019, 41(6): 772-780. doi: 10.13374/j.issn2095-9389.2019.06.009 |
[1] |
Zhang K, Yang K V, Lim S, et al. Effect of the presence of macrozones on short crack propagation in forged two-phase titanium alloys. Int J Fatigue, 2017, 104: 1 doi: 10.1016/j.ijfatigue.2017.07.002
|
[2] |
Semiatin S L, Bieler T R. The effect of alpha platelet thickness on plastic flow during hot working of TI-6Al-4V with a transformed microstructure. Acta Mater, 2001, 49(17): 3565 doi: 10.1016/S1359-6454(01)00236-1
|
[3] |
許國棟, 王鳳娥. 高溫鈦合金的發展和應用. 稀有金屬, 2008, 32(6): 774 doi: 10.3969/j.issn.0258-7076.2008.06.020
Xu G D, Wang F E. Development and application on high-temperature Ti-based alloys. Chin J Rare Met, 2008, 32(6): 774 doi: 10.3969/j.issn.0258-7076.2008.06.020
|
[4] |
馬少俊, 吳學仁, 劉建中, 等. TC21鈦合金的微觀組織對力學性能的影響. 航空材料學報, 2006, 26(5): 22 doi: 10.3969/j.issn.1005-5053.2006.05.006
Ma S J, Wu X R, Liu J Z, et al. Influence of microstructures on mechanical properties for TC21 titanium alloy. J Aeron Mater, 2006, 26(5): 22 doi: 10.3969/j.issn.1005-5053.2006.05.006
|
[5] |
Semiatin S L, Knisley S L, Fagin P N, et al. Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V. Metall Mater Trans A, 2003, 34(10): 2377 doi: 10.1007/s11661-003-0300-0
|
[6] |
Bhattacharyya D, Viswanathan G B, Fraser H L. Crystallographic and morphological relationships between β phase and the Widmanst?tten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy. Acta Mater, 2007, 55(20): 6765 doi: 10.1016/j.actamat.2007.08.029
|
[7] |
Stanford N, Bate P S. Crystallographic variant selection in Ti-6Al-4V. Acta Mater, 2004, 52(17): 5215 doi: 10.1016/j.actamat.2004.07.034
|
[8] |
Poorganji B, Yamaguchi M, Itsumi Y, et al. Microstructure evolution during deformation of a near-α titanium alloy with different initial structures in the two-phase region. Scripta Mater, 2009, 61(4): 419 doi: 10.1016/j.scriptamat.2009.04.033
|
[9] |
He D, Zhu J C, Lai Z H, et al. An experimental study of deformation mechanism and microstructure evolution during hot deformation of Ti-6Al-2Zr-1Mo-1V alloy. Mater Des, 2013, 46: 38 doi: 10.1016/j.matdes.2012.09.045
|
[10] |
Sun J Z, Li M Q, Li H. Interaction effect between alpha and beta phases based on dynamic recrystallization of isothermally compressed Ti-5Al-2Sn-2Zr-4Mo-4Cr with basketweave microstructure. J Alloys Compd, 2017, 692: 403 doi: 10.1016/j.jallcom.2016.09.065
|
[11] |
Srinivasan S G, Cahn J W, Jónsson H, et al. Excess energy of grain-boundary trijunctions: an atomistic simulation study. Acta Mater, 1999, 47(9): 2821 doi: 10.1016/S1359-6454(99)00120-2
|
[12] |
Li L, Luo J, Yan J J, et al. Dynamic globularization and restoration mechanism of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy during isothermal compression. J Alloys Compd, 2015, 622: 174 doi: 10.1016/j.jallcom.2014.10.043
|
[13] |
Li H M, Li M Q, Luo J, et al. Microstructure and mechanical properties of heat-treated Ti-5Al-2Sn-2Zr-4Mo-4Cr. Trans Nonferrous Met Soc China, 2015, 25(9): 2893 doi: 10.1016/S1003-6326(15)63915-2
|
[14] |
Teixeira J D C, Appolaire B, Aeby-Gautier E, et al. Transformation kinetics and microstructures of Ti17 titanium alloy during continuous cooling. Mater Sci Eng A, 2007, 448(1-2): 135 doi: 10.1016/j.msea.2006.10.024
|
[15] |
Tarín P, Fernández A L, Simón A G, et al. Transformations in the Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy and mechanical and microstructural characteristics. Mater Sci Eng A, 2006, 438-440: 364 doi: 10.1016/j.msea.2006.02.183
|
[16] |
Karthikeyan T, Dasgupta A, Khatirkar R, et al. Effect of cooling rate on transformation texture and variant selection during β→α transformation in Ti-5Ta-1.8Nb alloy. Mater Sci Eng A, 2010, 528(2): 549 doi: 10.1016/j.msea.2010.09.055
|
[17] |
Xu J W, Zeng W D, Jia Z Q, et al. Microstructure coarsening behavior of Ti-17 alloy with equiaxed alpha during heat treatment. J Alloys Compd, 2015, 618: 343 doi: 10.1016/j.jallcom.2014.08.223
|
[18] |
Park C H, Kim J H, Hyun Y T, et al. The origins of flow softening during high-temperature deformation of a Ti-6Al-4V alloy with a lamellar microstructure. J Alloys Compd, 2014, 582: 126 doi: 10.1016/j.jallcom.2013.08.041
|
[19] |
Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: a review. Master Sci Eng A, 1997, 238(2): 219 doi: 10.1016/S0921-5093(97)00424-3
|
[20] |
Mackenzie L W F, Pekguleryuz M O. The recrystallization and texture of magnesium-zine-cerium alloy. Scripta Mater, 2008, 59(6): 665 doi: 10.1016/j.scriptamat.2008.05.021
|
[21] |
Suwas S, Beausir B, Toth L S, et al. Texture evolution in commercially pure titanium atter warm equal channel angular extrusion. Acta Mater, 2011, 59(3): 1121 doi: 10.1016/j.actamat.2010.10.045
|
[22] |
Salib M, Teixeira J, Germain L, et al. Influence of transformation temperature on microtexture formation associated with α precipitation at β grain boundaries in a β metastable titanium alloy. Acta Mater, 2013, 61(10): 3758 doi: 10.1016/j.actamat.2013.03.007
|
[23] |
van Bohemen S M C, Kamp A, Petrov R H, et al. Nucleation and variant selection of secondary α plates in a β Ti alloy. Acta Mater, 2008, 56(20): 5907 doi: 10.1016/j.actamat.2008.08.016
|