<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
LI Shao-xiang, WANG Pu, LAN Peng, LIU Hua-song, LIU Qi-lin, LI Shu-gui, ZHANG Jia-quan. Melt flow and heat transfer at the crater end of round billet continuous casting using final electromagnetic stirring[J]. Chinese Journal of Engineering, 2019, 41(6): 748-756. doi: 10.13374/j.issn2095-9389.2019.06.006
Citation: LI Shao-xiang, WANG Pu, LAN Peng, LIU Hua-song, LIU Qi-lin, LI Shu-gui, ZHANG Jia-quan. Melt flow and heat transfer at the crater end of round billet continuous casting using final electromagnetic stirring[J]. Chinese Journal of Engineering, 2019, 41(6): 748-756. doi: 10.13374/j.issn2095-9389.2019.06.006

Melt flow and heat transfer at the crater end of round billet continuous casting using final electromagnetic stirring

doi: 10.13374/j.issn2095-9389.2019.06.006
More Information
  • Final electromagnetic stirring (F-EMS) is widely used in the billet and bloom continuous casting process because it effectively improves the as-cast quality. Numerous industrial trials on F-EMS have been conducted; however, the real melt flow and heat transfer characteristics at the crater end remain unclear. In this study, based on a round billet special steel continuous casting process, a coupled three-dimensional numerical model was developed to describe the F-EMS phenomenon. The flow and solidification behavior of the melt in the F-EMS region were obtained by a segmentation calculation model, and the Darcy source term method was employed to suppress the velocity within the mushy region. The effect of stirring current intensity and frequency on the electromagnetic field, melt flow, and heat transfer was investigated numerically. The model was validated using the measured data of magnetic flux density in the stirrer center and the strand surface temperature. According to the simulation results, with every 100 A increase in the current intensity, the maximal magnetic flux density increases by 19.05 mT. The electromagnetic force significantly increases with the increase in current intensity. With the increase in current frequency within 20-40 Hz, the magnetic flux density decreases slightly, whereas the electromagnetic force increases. Moreover, a swirling flow field in the stirrer region is observed under the rotary electromagnetic force, and the tangential velocity of melt increases with the increase in current intensity and frequency. Additionally, the swirling flow enhances the local melt heat transfer at the radial direction of the round strand. As the current intensity and frequency increase, the temperature of the melt in the liquid core decreases, and the center solid fraction at the F-EMS-implemented position increases accordingly.

     

  • loading
  • [1]
    毛斌, 張桂芳, 李愛武. 連續鑄鋼用電磁攪拌的理論與技術. 北京: 冶金工業出版社, 2012

    Mao B, Zhang G F, Li A W. Theory and Technology of Electromagnetic Stirring for Continuous Casting. Beijing: Metallurgical Industry Press, 2012
    [2]
    Ayata K, Mori T, Fujimoto T, et al. Improvement of macrosegregation in continuously cast bloom and billet by electromagnetic stirring. Trans Iron Steel Inst Jpn, 1984, 24(11): 931 doi: 10.2355/isijinternational1966.24.931
    [3]
    Mizukami H, Komatsu M, Kitagawa T, et al. Effect of electromagnetic stirring at the final stage of solidification of continuously cast strand. Tetsu-to-Hagané, 1984, 70(2): 194 doi: 10.2355/tetsutohagane1955.70.2_194
    [4]
    Suzuki K, Shinsho Y, Murata K, et al. Hot model experiments on electromagnetic stirring at about crater end of continuously cast bloom. Trans Iron Steel Inst Jpn, 1984, 24(11): 940 doi: 10.2355/isijinternational1966.24.940
    [5]
    Oh K S, Chang Y W. Macrosegeregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring. ISIJ Int, 1995, 35(7): 866 doi: 10.2355/isijinternational.35.866
    [6]
    王彪, 謝植, 賈光霖, 等. 凝固末端電磁攪拌參數確定及其對中心偏析的影響. 鋼鐵, 2007, 42(3): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT200703004.htm

    Wang B, Xie Z, Jia G L, et al. Parameter determination and effects on center segregation of F-EMS. Iron Steel, 2007, 42(3): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT200703004.htm
    [7]
    葛亮, 曾亞南, 汪成義, 等. 大方坯末端電磁攪拌工藝參數優化. 煉鋼, 2015, 31(1): 61 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201501018.htm

    Ge L, Zeng Y N, Wang C Y, et al. Optimization of F-EMS parameters of bloom continuous casting. Steelmaking, 2015, 31(1): 61 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201501018.htm
    [8]
    王波, 陳列, 張旭, 等. 特殊鋼連鑄大方坯末端電磁攪拌位置研究與應用. 連鑄, 2016, 41(5): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-LANG201605007.htm

    Wang B, Chen L, Zhang X, et al. Study and application of the F——EMS position for the special steel bloom continuous casting. Contin Cast, 2016, 41(5): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-LANG201605007.htm
    [9]
    周力, 高書成, 蔣棟初, 等. 小方坯連鑄機末端電磁攪拌位置及連鑄工藝優化實踐. 煉鋼, 2018, 34(2): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201802007.htm

    Zhou L, Gao S C, Jiang D C, et al. Optimization on F-EMS position and casting parameters of billet caster. Steelmaking, 2018, 34(2): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201802007.htm
    [10]
    丁寧, 包燕平, 孫奇松, 等. 末端電磁攪拌位置確定及對SWRH82B鋼中心偏析的影響. 北京科技大學學報, 2011, 33(1): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201101005.htm

    Ding N, Bao Y P, Sun Q S, et al. Location determination of final electromagnetic stirring and its effect on central carbon segregation for SWRH82B steel. J Univ Sci Technol Beijing, 2011, 33(1): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201101005.htm
    [11]
    安航航, 包燕平, 王敏, 等. 凝固末端電磁攪拌和輕壓下復合技術對大方坯高碳鋼偏析和中心縮孔的影響. 工程科學學報, 2017, 39(7): 996 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201707004.htm

    An H H, Bao Y P, Wang M, et al. Effect of combining F-EMS and MSR on the segregation and shrinkage cavity in continuously cast high-carbon steel blooms. Chin J Eng, 2017, 39(7): 996 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201707004.htm
    [12]
    孫海波, 李烈軍, 程曉文, 等. 大方坯末端電磁攪拌工藝參數優化與設計. 煉鋼, 2015, 31(4): 42 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201504010.htm

    Sun H B, Li L J, Cheng X W, et al. Optimizing and designing the technology parameters of the F-EMS for the bloom continuous casting. Steelmaking, 2015, 31(4): 42 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201504010.htm
    [13]
    Sun H B, Li L J, Wang J H, et al. Coordinating optimisation of F-EMS and soft reduction during bloom continuous casting process for special steel. Ironmaking Steelmaking, 2018, 45(8): 708 doi: 10.1080/03019233.2017.1323394
    [14]
    蘇旺, 姜東濱, 羅森, 等. 方坯連鑄凝固末端電磁攪拌工藝優化的數值模擬. 東北大學學報(自然科學版), 2013, 34(5): 673 doi: 10.3969/j.issn.1005-3026.2013.05.015

    Su W, Jiang D B, Luo S, et al. Numerical simulation for optimization of F-EMS in billet continuous casting. J Northeast Univ Nat Sci, 2013, 34(5): 673 doi: 10.3969/j.issn.1005-3026.2013.05.015
    [15]
    Li S X, Lan P, Tang H Y, et al. Study on the electromagnetic field, fluid flow, and solidification in a bloom continuous casting mold by numerical simulation. Steel Res Int, 2018, 89(12): 1800071 doi: 10.1002/srin.201800071
    [16]
    Jones W P, Launder B E. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Transfer, 1973, 16(6): 1119 doi: 10.1016/0017-9310(73)90125-7
    [17]
    李少翔, 張曉萌, 李亮, 等. 連鑄流動與凝固耦合模擬中糊狀區系數的表征及影響. 工程科學學報, 2019, 41(2): 199 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201902006.htm

    Li S X, Zhang X M, Li L, et al. Representation and effect of mushy zone coefficient on coupled flow and solidification simulation during continuous casting. Chin J Eng, 2019, 41(2): 199 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201902006.htm
    [18]
    Lai K Y M, Salcudean M, Tanaka S, et al. Mathematical modeling of flows in large tundish systems in steelmaking. Metall Trans B, 1986, 17(3): 449 doi: 10.1007/BF02670209
    [19]
    Savage J, Pritchard W H. The problem of rupture of the billet in the continuous casting of steel. J Iron Steel Inst, 1954, 178(3): 269 http://www.researchgate.net/publication/284154760_The_problem_of_rupture_of_the_billet_in_the_continuous_casting_of_steel
    [20]
    Beitelman L. Effect of mold EMS design on billet casting productivity and product quality. Can Metall Q, 1999, 38(5): 301 doi: 10.1179/cmq.1999.38.5.301
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (1173) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频