<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
WANG Zhen, SONG Xiao-fei, CHEN Tong-yun. A review of bone cutting in surgery[J]. Chinese Journal of Engineering, 2019, 41(6): 709-718. doi: 10.13374/j.issn2095-9389.2019.06.002
Citation: WANG Zhen, SONG Xiao-fei, CHEN Tong-yun. A review of bone cutting in surgery[J]. Chinese Journal of Engineering, 2019, 41(6): 709-718. doi: 10.13374/j.issn2095-9389.2019.06.002

A review of bone cutting in surgery

doi: 10.13374/j.issn2095-9389.2019.06.002
More Information
  • Corresponding author: SONG Xiao-fei, E-mail: xiaofeisong@tju.edu.cn
  • Received Date: 2018-05-08
  • Publish Date: 2019-06-01
  • Bone cutting is a basic and vital clinical operation in surgery. Traditional mechanical processing methods such as drilling, grinding, and milling, are widely applied in bone surgery. Bone is a hard biological tissue with a complex structure. The compact bone structure is similar to a brittle fiber-reinforced composite. It is easy to damage bone tissue and reduce bone activity during cutting. The quality and efficiency of bone cutting are related to the therapeutic and rehabilitative outcomes of patients. A correct understanding of bone-cutting processes and mechanisms, optimizing the process parameters of bone cutting, and developing advanced bone-cutting surgical tools are important ways to reduce cutting-induced thermal-mechanical damage from bone cutting and improve the postoperative rehabilitation of patients. This article reviewed published works related to constitutive models of bone tissue, bone cutting processes, and the cutting mechanisms used in different bone-cutting surgeries, with a main focus on the effect of machining parameters and tool design. The latest techniques and challenges in ultrasonic bone cutting were also discussed. Finally, it is concluded that bone-cutting research should address the following aspects: (1) improving the constitutive model for numerically simulating bone cutting; (2) constructing a systemic bone-material-cutting theory that explains the cutting mechanism as it relates to the chip morphology of bone material; (3) further refining the development of cutting tools for bone materials; (4) recognizing the advantages of ultrasonic bone cutting, including high safety levels, less damage, and faster healing, which will guide the development trends of future clinical bone-cutting operations.

     

  • loading
  • [1]
    Marco M, Rodríguez-Millán M, Santiuste C, et al. A review on recent advances in numerical modelling of bone cutting. J Mech Behav Biomed Mater, 2015, 44: 179 doi: 10.1016/j.jmbbm.2014.12.006
    [2]
    Takabi B, Tai B L. A review of cutting mechanics and modeling techniques for biological materials. Med Eng Phys, 2017, 45: 1 doi: 10.1016/j.medengphy.2017.04.004
    [3]
    Birkenfeld F, Erika Becker M, Harder S, et al. Increased intraosseous temperature caused by ultrasonic devices during bone surgery and the influences of working pressure and cooling irrigation. Int J Oral Max Impl, 2012, 27(6): 1382
    [4]
    Manerrnann W J, Sampathkumar P, Thompson R L. Sternal wound infections. Best Pract Res Clin Anaesthesiol, 2008, 22(3): 423 doi: 10.1016/j.bpa.2008.04.003
    [5]
    Wiggins K L, Malkin S. Orthogonal machining of bone. J Biomech Eng, 1978, 100(3): 122 doi: 10.1115/1.3426202
    [6]
    Jacobs C H, Pope M H, Berry J T, et al. A study of the bone machining process-orthogonal cutting. J Biomech, 1974, 7(2): 131 doi: 10.1016/0021-9290(74)90051-7
    [7]
    Krause W R. Orthogonal bone cutting: saw design and operating characteristics. J Biomech Eng, 1987, 109(3): 263 doi: 10.1115/1.3138679
    [8]
    Sui J B, Sugita N, Ishii K, et al. Force analysis of orthogonal cutting of bovine cortical bone. Mach Sci Technol, 2013, 17(4): 637 doi: 10.1080/10910344.2013.837355
    [9]
    Alam K, Mitrofanov A V, Silberschmidt V V. Finite element analysis of forces of plane cutting of cortical bone. Comput Mater Sci, 2009, 46(3): 738 doi: 10.1016/j.commatsci.2009.04.035
    [10]
    Alam K, Mitrofanov A V, Silberschmidt V V. Thermal analysis of orthogonal cutting of cortical bone using finite element simulations. Int J Exp Comput Biomech, 2010, 1(3): 236 doi: 10.1504/IJECB.2010.035259
    [11]
    Childs T H C, Arola D. Machining of cortical bone: Simulations of chip formation mechanics using metal machining models. Mach Sci Technol, 2011, 15(2): 206 doi: 10.1080/10910344.2011.580699
    [12]
    Santiuste C, Rodríguez-Millán M, Giner E, et al. The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone. Compos Struct, 2014, 116: 423 doi: 10.1016/j.compstruct.2014.05.031
    [13]
    Li S, Zahedi A, Silberschmidt V, et al. Penetration of cutting tool into cortical bone: experimental and numerical investigation of anisotropic mechanical behaviour. J Biomech, 2014, 47: 1117 doi: 10.1016/j.jbiomech.2013.12.019
    [14]
    Feldmann A, Ganser P, Nolte L, et al. Orthogonal cutting of cortical bone: Temperature elevation and fracture toughness. Int J Mach Tools Manuf, 2017, 118-119: 1 doi: 10.1016/j.ijmachtools.2017.03.009
    [15]
    殷杰. 骨骼微切削過程的有限元仿真與實驗研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2016

    Yin J. Study on Simulation and Experiment of Micro Cutting of Bone[Dissertation]. Harbin: Harbin Institute of Technology, 2016
    [16]
    Liao Z R, Axinte D A. On chip formation mechanism in orthogonal cutting of bone. Int J Mach Tools Manuf, 2016, 102: 41 doi: 10.1016/j.ijmachtools.2015.12.004
    [17]
    廖志榮. 骨材料切削加工及一種新型刀具研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2017

    Liao Z R. Research on Bone Cutting and A Novel Tool Development[Dissertation]. Harbin: Harbin Institute of Technology, 2017
    [18]
    崔洪胤, 胡亞輝, 王超. 刀具微織構形貌對骨切削溫度的預報模型研究. 機床與液壓, 2015, 43(23): 31 doi: 10.3969/j.issn.1001-3881.2015.23.008

    Cui H Y, Hu Y H, Wang C. Study on the prediction model of cutting temperature on cortical bone by micro-texture tool. Mach Tool Hydraul, 2015, 43(23): 31 doi: 10.3969/j.issn.1001-3881.2015.23.008
    [19]
    何玲. 基于正交各向異性分析的皮質骨鉆削的仿真與實驗研究[學位論文]. 天津: 天津理工大學, 2016

    He L. Finite Element Analysis and Experimental Research of Cortical Bone Drilling Performance Based on Orthotropic Analysis[Dissertation]. Tianjin: Tianjin University of Technology, 2016
    [20]
    Augustin G, Davila S, Mihoci K, et al. Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg, 2008, 128(1): 71 http://www.ncbi.nlm.nih.gov/pubmed/17762937
    [21]
    Karaca F, Aksakal B, Kom M. Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study. Med Eng Phys, 2011, 33(10): 1221 doi: 10.1016/j.medengphy.2011.05.013
    [22]
    Sezek S, Aksakal B, Karaca F. Influence of drill parameters on bone temperature and necrosis: a FEM modelling and in vitro experiments. Comput Mater Sci, 2012, 60: 13 doi: 10.1016/j.commatsci.2012.03.012
    [23]
    Lee J E, Rabin Y, Ozdoganlar O B. A new thermal model for bone drilling with applications to orthopaedic surgery. Med Eng Phys, 2011, 33(10): 1234 doi: 10.1016/j.medengphy.2011.05.014
    [24]
    Pandey R K, Panda S S. Drilling of bone: a comprehensive review. J Clin Orthop Trauma, 2013, 4(1): 15 doi: 10.1016/j.jcot.2013.01.002
    [25]
    Augustin G, Zigman T, Davila S, et al. Cortical bone drilling and thermal osteonecrosis. Clin Biomech, 2012, 27(4): 313 doi: 10.1016/j.clinbiomech.2011.10.010
    [26]
    Hillery M T, Shuaib I. Temperature effects in drilling of human and bovine bone. J Mater Process Technol, 1999, 92-93: 302 doi: 10.1016/S0924-0136(99)00155-7
    [27]
    Karmani S, Lam F. The design and function of surgical drills and K-wires. Curr Orthop, 2004, 18(6): 484 doi: 10.1016/j.cuor.2004.12.011
    [28]
    Bertollo N, Milne H R M, Ellis L P, et al. A comparison of the thermal properties of 2-and 3-fluted drills and the effects on bone cell viability and screw pull-out strength in an ovine model. Clin Biomech, 2010, 25(6): 613 doi: 10.1016/j.clinbiomech.2010.02.007
    [29]
    Lee J E, Ozdoganlar B, Rabin Y. An experimental investigation on thermal exposure during bone drilling. Med Eng Phys, 2012, 34(10): 1510 doi: 10.1016/j.medengphy.2012.03.002
    [30]
    Udiljak T, Ciglar D, Skoric S. Investigation into bone drilling and thermal bone necrosis. Adv Prod Eng Manage, 2007, 2(3): 103 http://www.researchgate.net/publication/281153908_Investigation_into_bone_drilling_and_thermal_bone_necrosis
    [31]
    Karmani S. The thermal properties of bone and the effects of surgical intervention. Curr Orthop, 2006, 20(1): 52 doi: 10.1016/j.cuor.2005.09.011
    [32]
    Lughmani W A, Bouazza-Marouf K, Ashcroft I. Finite element modeling and experimentation of bone drilling forces. J Phys Conf Ser, 2013, 451: 012034 doi: 10.1088/1742-6596/451/1/012034
    [33]
    Tu Y K, Chen L W, Ciou J S, et al. Finite element simulations of bone temperature rise during bone drilling based on a bone analog. J Med Biol Eng, 2013, 33(3): 269 doi: 10.5405/jmbe.1366
    [34]
    Alam K, Khan M, Silberschmidt V V. 3D finite-element modelling of drilling cortical bone: temperature analysis. J Med Biol Eng, 2014, 34(6): 618 http://www.researchgate.net/publication/259669939_3D_Finite-Element_Modelling_of_Drilling_Cortical_Bone_Temperature_Analysis
    [35]
    Xu L L, Wang C Y, Jiang M, et al. Drilling force and temperature of bone under dry and physiological drilling conditions. Chin J Mech Eng, 2014, 27(6): 1240 doi: 10.3901/CJME.2014.0912.151
    [36]
    Li X S, Zhu W, Wang J Q, et al. Optimization of bone drilling process based on finite element analysis. Appl Therm Eng, 2016, 108: 211 doi: 10.1016/j.applthermaleng.2016.07.125
    [37]
    Sui J B, Sugita N, Ishii K, et al. Mechanistic modeling of bonedrilling process with experimental validation. J Mater Process Technol, 2014, 214(4): 1018 doi: 10.1016/j.jmatprotec.2013.11.001
    [38]
    Sui J B, Sugita N, Mitsuishi M. Thermal modeling of temperature rise for bone drilling with experimental validation. J Manuf Sci Eng, 2015, 137(6): 061008 doi: 10.1115/1.4030880
    [39]
    Tai B L, Palmisano A C, Belmont B, et al. Numerical evaluation of sequential bone drilling strategies based on thermal damage. Med Eng Phys, 2015, 37(9): 855 doi: 10.1016/j.medengphy.2015.06.002
    [40]
    Tai B L, Zhang L H, Wang A, et al. Neurosurgical bone grinding temperature monitoring. Procedia CIRP, 2013, 5: 226 doi: 10.1016/j.procir.2013.01.045
    [41]
    Zhang L H, Tai B L, Wang G J, et al. Thermal model to investigate the temperature in bone grinding for skull base neurosurgery. Med Eng Phys, 2013, 35(10): 1391 doi: 10.1016/j.medengphy.2013.03.023
    [42]
    朱錚. 骨組織磨削特性實驗研究[學位論文]. 廈門: 華僑大學, 2014

    Zhu Z. Experimental Study on Bone Tissue Grinding Characteristics[Dissertation]. Xiamen: Huaqiao University, 2014
    [43]
    Shin H C, Yoon Y S. Bone temperature estimation during orthopaedic round bur milling operations. J Biomech, 2006, 39(1): 33 doi: 10.1016/j.jbiomech.2004.11.004
    [44]
    Sugita N, Osa T, Mitsuishi M. Analysis and estimation of cutting-temperature distribution during end milling in relation to orthopedic surgery. Med Eng Phys, 2009, 31(1): 101 doi: 10.1016/j.medengphy.2008.05.001
    [45]
    Sugita N, Ishii K, Sui J B, et al. Multi-grooved cutting tool to reduce cutting force and temperature during bone machining. CIRP Ann, 2014, 63(1): 101 doi: 10.1016/j.cirp.2014.03.069
    [46]
    Liao Z R, Axinte D A, Gao D. A novel cutting tool design to avoid surface damage in bone machining. Int J Mach Tools Manuf, 2017, 116: 52 doi: 10.1016/j.ijmachtools.2017.01.003
    [47]
    Mason T J. Therapeutic ultrasound an overview. Ultrason Sonochem, 2011, 18(4): 847 doi: 10.1016/j.ultsonch.2011.01.004
    [48]
    Crum L, Bailey M, Hwang J H, et al. Therapeutic ultrasound: Recent trends and future perspectives. Phys Procedia, 2010, 3(1): 25 doi: 10.1016/j.phpro.2010.01.005
    [49]
    Zhang Y, Wang C Y, Zhou S B, et al. A comparison review on orthopedic surgery using piezosurgery and conventional tools. Procedia CIRP, 2017, 65: 99 doi: 10.1016/j.procir.2017.04.024
    [50]
    周沖, 楊福兵, 王斌, 等. 超聲骨刀在椎管內腫瘤切除術中的應用. 第三軍醫大學學報, 2016, 38(2): 200 https://www.cnki.com.cn/Article/CJFDTOTAL-DSDX201602019.htm

    Zhou C, Yang F B, Wang B, et al. Piezoelectric surgery in intraspinal tumor resection. J Third Mil Med Univ, 2016, 38(2): 200 https://www.cnki.com.cn/Article/CJFDTOTAL-DSDX201602019.htm
    [51]
    王保利, 楊馳, 蔡協藝. 超聲骨刀在口腔頜面外科中的應用概況. 口腔材料器械雜志, 2014, 23(2): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-KCCL201402011.htm

    Wang B L, Yang C, Cai X Y. Application overview of piezosurgery in oral and maxillofacial surgery. Chin J Dent Mater Dev, 2014, 23(2): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-KCCL201402011.htm
    [52]
    Khambay B S, Walmsley A D. Investigations into the use of an ultrasonic chisel to cut bone, Part 1: forces applied by clinicians. J Dent, 2000, 28(1): 31 doi: 10.1016/S0300-5712(99)00043-3
    [53]
    Khambay B S, Walmsley A D. Investigations into the use of an ultrasonic chisel to cut bone, Part 2: cutting ability. J Dent, 2000, 28(1): 39 doi: 10.1016/S0300-5712(99)00044-5
    [54]
    Alam K. Experimental and Numerical Analysis of Conventional and Ultrasonically-assisted Cutting of Bone[Dissertation]. Loughborough: Loughborough University, 2009
    [55]
    Alam K, Khan M, Silberschmidt V V. Analysis of forces in conventional and ultrasonically assisted plane cutting of cortical bone. Proc Inst Mech Eng Part H J Eng Med, 2013, 227(6): 636 doi: 10.1177/0954411913485042
    [56]
    Alam K, Silberschmidt V V. Analysis of temperature in conventional and ultrasonically-assisted drilling of cortical bone with infrared thermography. Technol Health Care, 2014, 22(2): 243 doi: 10.3233/THC-140813
    [57]
    Sugita N, Shu L M, Shimada T, et al. Novel surgical machining via an impact cutting method based on fracture analysis with a discontinuum bone model. CIRP Ann, 2017, 66(1): 65 doi: 10.1016/j.cirp.2017.04.028
    [58]
    顧煜炯. 超聲振動系統的研究及系列超聲手術刀的研制[學位論文]. 北京: 清華大學, 1996

    Gu Y J. Research on Ultrasonic Vibration Systems and Development on Series of Ultrasonic Surgical Instruments[Dissertation]. Beijing: Tsinghua University, 1996
    [59]
    Chen Y, Zhou Z Y, Zhang G H. Effects of different tissue loads on high power ultrasonic surgery scalpel. Ultrasound Med Biol, 2006, 32(3): 415 doi: 10.1016/j.ultrasmedbio.2005.12.012
    [60]
    章剛華, 陳穎. 超聲骨科換能器的組織負載特性研究. 壓電與聲光, 2011, 33(6): 923 doi: 10.3969/j.issn.1004-2474.2011.06.020

    Zhang G H, Chen Y. Research on tissue load characteristics of ultrasonic bone transducer. Piezoelectr Acoustoopt, 2011, 33(6): 923 doi: 10.3969/j.issn.1004-2474.2011.06.020
    [61]
    Wang Y, Cao M, Zhao X R, et al. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone. Med Eng Phys, 2014, 36(11): 1408 doi: 10.1016/j.medengphy.2014.04.007
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (1219) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频