Citation: | WANG Yu, XIONG Bai-qing, LI Zhi-hui, WEN Kai, LI Xi-wu, ZHANG Yong-an, YAN Li-zhen, LIU Hong-wei, YAN Hong-wei. Microstructure and properties of friction stir welded joints for Al?Zn?Mg?Cu?Zr?(Sc) alloys[J]. Chinese Journal of Engineering, 2020, 42(5): 612-619. doi: 10.13374/j.issn2095-9389.2019.05.29.001 |
[1] |
Sharma N, Khan Z A, Siddiquee A N. Friction stir welding of aluminum to copper-an overview. Trans Nonferrous Met Soc China, 2017, 27(10): 2113 doi: 10.1016/S1003-6326(17)60238-3
|
[2] |
Cam G, Mistikoglu S. Recent developments in friction stir welding of Al-alloys. J Mater Eng Perform, 2014, 23(6): 1936 doi: 10.1007/s11665-014-0968-x
|
[3] |
Janaki Ram G D, Mitra T K, Shankar V, et al. Microstructural refinement through inoculation of type 7020 Al?Zn?Mg alloy welds and its effect on hot cracking and tensile properties. J Mater Process Technol, 2003, 142(1): 174 doi: 10.1016/S0924-0136(03)00574-0
|
[4] |
Seshagiri P C, Nair B S, Reddy G M, et al. Improvement of mechanical properties of aluminum-copper alloy (AA2219) GTA welds by Sc addition. Sci Technol Weld Join, 2008, 13(2): 146 doi: 10.1179/174329308X283866
|
[5] |
佟建華, 李煉, 鄧冬, 等. 6061-T6鋁合金薄板的攪拌摩擦焊接. 北京科技大學學報, 2008, 30(9):1011 doi: 10.3321/j.issn:1001-053X.2008.09.010
Tong J H, Li L, Deng D, et al. Friction stir welding of 6061-T6 aluminum alloy thin sheets. J Univ Sci Technol Beijing, 2008, 30(9): 1011 doi: 10.3321/j.issn:1001-053X.2008.09.010
|
[6] |
張坤, 江海濤, 孟強, 等. 焊接速度對機器人攪拌摩擦焊AA7B04鋁合金接頭組織和力學性能的影響. 工程科學學報, 2018, 40(12):1525
Zhang K, Jiang H T, Meng Q, et al. Effect of the welding speed on the microstructure and the mechanical properties of robotic friction stir welded AA7B04 aluminum alloy. Chin J Eng, 2018, 40(12): 1525
|
[7] |
Norman A F, Hyde K, Costello F, et al. Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding. Mater Sci Eng A, 2003, 354(1-2): 188 doi: 10.1016/S0921-5093(02)00942-5
|
[8] |
Chen Y, Liu C Y, Zhang B, et al. Effects of friction stir processing and minor Sc addition on the microstructure, mechanical properties, and damping capacity of 7055 Al alloy. Mater Charact, 2018, 135: 25 doi: 10.1016/j.matchar.2017.11.030
|
[9] |
趙志浩, 徐振, 王高松. ER5356焊絲中Sc、Zr、Er對7A52鋁合金焊接性能的影響. 材料研究學報, 2013, 27(3):287
Zhao Z H, Xu Z, Wang G S. Effect of Sc, Zr, Er in ER5356 welding wire on mechanical properties of welded joint of 7A52 aluminum alloy. Chin J Mater Res, 2013, 27(3): 287
|
[10] |
元恒新. 焊接材料及工藝對鋁合金焊接性能的影響[學位論文]. 重慶: 重慶大學, 2006
Yuan H X. Study on Effect of Welding Materials and Procedures on Weldability of Aluminum Alloys[Dissertation]. Chongqing: Chongqing University, 2006
|
[11] |
He Z B, Peng Y Y, Yin Z M, et al. Comparison of FSW and TIG welded joints in Al?Mg?Mn?Sc?Zr alloy plates. Trans Nonferrous Metal Soc China, 2011, 21(8): 1685 doi: 10.1016/S1003-6326(11)60915-1
|
[12] |
Mishra R S, Ma Z Y. Friction stir welding and processing. Mater Sci Eng R, 2005, 50(1-2): 1 doi: 10.1016/j.mser.2005.07.001
|
[13] |
王宇, 熊柏青, 李志輝, 等. 新型超高強Al?Zn?Mg?Cu合金熱壓縮變形行為及微觀組織特征. 材料工程, 2019, 47(2):99 doi: 10.11868/j.issn.1001-4381.2018.000699
Wang Y, Xiong B Q, Li Z H, et al. Hot compressive deformation behavior and microstructure characterization of new ultra strength Al?Zn?Mg?Cu alloy. J Mater Eng, 2019, 47(2): 99 doi: 10.11868/j.issn.1001-4381.2018.000699
|
[14] |
Sha G, Cerezo A. Early-stage precipitation in Al?Zn?Mg?Cu alloy (7050). Acta Mater, 2004, 52(15): 4503 doi: 10.1016/j.actamat.2004.06.025
|
[15] |
Li X Z, Hansen V, Gj?nnes J, et al. HREM study and structure modeling of the η' phase, the hardening precipitates in commercial Al?Zn?Mg alloys. Acta Mater, 1999, 47(9): 2651 doi: 10.1016/S1359-6454(99)00138-X
|
[16] |
Habiby F, Haq A U, Hashmi F H, et al. Some remarks on the hardness and yield strength of aluminum alloy 7075 as a function of retrogression time. Metall Mater Trans A, 1987, 18(2): 350 doi: 10.1007/BF02825718
|
[17] |
Benavides S, Li Y, Murr L E, et al. Low-temperature friction-stir welding of 2024 aluminum. Scripta Mater, 1999, 41(8): 809 doi: 10.1016/S1359-6462(99)00226-2
|
[18] |
Sato Y S, Kokawa H, Enomoto M, et al. Microstructural evolution of 6063 aluminum during friction-stir welding. Metall Mater Trans A, 1999, 30(9): 2429 doi: 10.1007/s11661-999-0251-1
|
[19] |
Mahoney M W, Rhodes C G, Flintoff J G, et al. Properties of friction-stir-welded 7075 T651 aluminum. Metall Mater Trans A, 1998, 29A: 1955
|
[20] |
Wang Y, Xiong B Q, Li Z H, et al. As-cast microstructure of Al?Zn?Mg?Cu?Zr alloy containing trace amount of Sc. Rare Met, 2019, 38(4): 343 doi: 10.1007/s12598-018-1136-5
|
[21] |
Su J Q, Nelson T W, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminum. Acta Mater, 2003, 51(3): 713 doi: 10.1016/S1359-6454(02)00449-4
|
[22] |
Adler P N, Delasi R. Calorimetric studies of 7000 series aluminum alloys: II. Comparison of 7075, 7050 and RX720 alloys. Metall Trans A, 1977, 8(7): 1185 doi: 10.1007/BF02667404
|
[23] |
李召明. Sc對Al−Zn−Mg合金組織和性能影響的研究[學位論文]. 北京: 中國科學院大學, 2018
Li Z M. Study on the Microstructure and Properties of Al−Zn−Mg Alloy with Scandium Addition[Dissertation]. Beijing: University of Chinese Academic Science, 2018
|
[24] |
Deng Y, Peng B, Xu G F, et al. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al?Zn?Mg alloys. Mater Sci Eng A, 2015, 639: 500 doi: 10.1016/j.msea.2015.05.052
|