<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
LI Rui, XIA Yi, XU Lei, LIU Jian-hua, GANG Rui-qi, LUO Tong. Study of rapidly synthesis of ZnO nanorods by microwave hydrothermal method and photocatalytic performance[J]. Chinese Journal of Engineering, 2020, 42(1): 78-83. doi: 10.13374/j.issn2095-9389.2019.05.25.003
Citation: LI Rui, XIA Yi, XU Lei, LIU Jian-hua, GANG Rui-qi, LUO Tong. Study of rapidly synthesis of ZnO nanorods by microwave hydrothermal method and photocatalytic performance[J]. Chinese Journal of Engineering, 2020, 42(1): 78-83. doi: 10.13374/j.issn2095-9389.2019.05.25.003

Study of rapidly synthesis of ZnO nanorods by microwave hydrothermal method and photocatalytic performance

doi: 10.13374/j.issn2095-9389.2019.05.25.003
More Information
  • Nano-zinc oxide materials have been widely studied and applied due to their excellent photocatalytic properties. In this study, ZnO nanorods were rapidly synthesized via a microwave-assisted hydrothermal method, using Zn(OH)2 precursor and ZnO seeds that were prepared by zinc sulfate, zinc acetate, and zinc hydroxide as raw materials. The morphology, nanostructure, and optical properties of ZnO nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis spectroscopy. To investigate the effect of microwave irradiation on the photocatalytic activity of the ZnO nanorods, the photocatalytic properties of the samples were tested by degrading rhodamine B (RhB) under ultraviolet and visible light for about 80 min. The experimental results indicate that Zn(OH)2 precursor and ZnO seeds can be successfully converted into a three-dimensional cage structure based on the self-assembly of ZnO nanorods in 30 min with microwave irradiation reaction. Compared with the conventional method of synthesizing ZnO nanorods, the samples under microwave irradiation featured a better crystallinity performance. The UV-vis results show that microwave radiation can cause a red shift of the absorption edge of synthesized ZnO nanorods and reduce the band gap energy, thereby enhancing the photocatalytic activity and efficiency of the ZnO nanorods. The photocatalytic test results indicate that ZnO nanorods synthesized by the microwave-assisted hydrothermal method have a better efficiency of light absorption; the samples have a better degradation rate of rhodamine B under the ultraviolet and visible light irradiation. The degradation efficiency of rhodamine B by ZnO nanorods could reach 98.5% within 80 min under ultraviolet light irradiation. The microwave-assisted synthesis method can allow to synthesize a large amount of ZnO nanorods materials in a short time, and it has the advantages of high-efficiency batch preparation and environmental friendliness.

     

  • loading
  • [1]
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37 doi: 10.1038/238037a0
    [2]
    Zhang J L, Wu Y M, Xing M Y, et al. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ Sci, 2010, 3(6): 715 doi: 10.1039/b927575d
    [3]
    Chen S F, Zhao W, Liu W, et al. Preparation characterization and activity evaluation of p-n junction photocatalyst p-NiO/n-ZnO. J Sol-Gel Sci Technol, 2009, 50(3): 387 doi: 10.1007/s10971-009-1908-3
    [4]
    Zhang M L, An T C, Hu X H, et al. Preparation and photocatalytic properties of a nanometer ZnO?SnO2 coupled oxide. Appl Catal A, 2004, 260(2): 215 doi: 10.1016/j.apcata.2003.10.025
    [5]
    Vinodgopal K, Kmat P V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ Sci Technol, 1995, 29(3): 841 doi: 10.1021/es00003a037
    [6]
    Othman A A, Ali M A, Ibrahim E M M, et al. Influence of Cu doping on structural, morphological, photoluminescence, and electrical properties of ZnO nanostructures synthesized by ice-bath assisted sonochemical method. J Alloys Compd, 2016, 683: 399 doi: 10.1016/j.jallcom.2016.05.131
    [7]
    孫強強, 王書民, 王正民. 微波法制備納米棒狀氧化鋅及其摻雜改性. 材料科學與工程學報, 2013, 31(5):732 doi: 10.3969/j.issn.1673-2812.2013.05.023

    Sun Q Q, Wang S M, Wang Z M. Preparation and doping modification of ZnO nanorods by microwave heating. J Mater Sci Eng, 2013, 31(5): 732 doi: 10.3969/j.issn.1673-2812.2013.05.023
    [8]
    Thankachan R M, Joy N, Abraham J, et al. Enhanced photocatalytic performance of ZnO nanostructures produced via a quick microwave assisted route for the degradation of rhodamine in aqueous solution. Mater Res Bull, 2017, 85: 131 doi: 10.1016/j.materresbull.2016.09.009
    [9]
    Mo M, Yu J C, Zhang L, et al. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Adv Mater, 2005, 17(6): 756 doi: 10.1002/adma.200401477
    [10]
    Qi K Z, Cheng B, Yu J G, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloys Compd, 2017, 727: 792 doi: 10.1016/j.jallcom.2017.08.142
    [11]
    Ba-Abbad M M, Kadhum A A H, Mohamad A B, et al. The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol-gel technique. J Alloys Compd, 2013, 550: 63 doi: 10.1016/j.jallcom.2012.09.076
    [12]
    Hirate T, Kimpara T, Nakamura S, et al. Control of diameter of ZnO nanorods grown by chemical vapor deposition with laser ablation of ZnO. Superlattices Microstruct, 2007, 42(1-6): 409 doi: 10.1016/j.spmi.2007.04.011
    [13]
    Labuayai S, Promarak V, Maensiri S. Synthesis and optical properties of nanocrystalline ZnO powders prepared by a direct thermal decomposition route. Appl Phys A, 2009, 94(4): 755 doi: 10.1007/s00339-008-4984-2
    [14]
    Zhang B P, Binh N T, Wakatsuki K, et al. Pressure-dependent ZnO nanocrsytal growth in a chemical vapor deposition process. J Phys Chem B, 2004, 108(30): 10899 doi: 10.1021/jp048602i
    [15]
    陳娜麗, 楊樹榮, 任亞鵬, 等. 棒狀氧化鋅的制備及其光催化性能. 蘭州理工大學學報, 2017, 43(2):76 doi: 10.3969/j.issn.1673-5196.2017.02.015

    Chen N L, Yang S R, Ren Y P, et al. Preparation of rod like oxide of zinc and its photocatalytic performance. J Lanzhou Univ Technol, 2017, 43(2): 76 doi: 10.3969/j.issn.1673-5196.2017.02.015
    [16]
    Polsongkram D, Chamninok P, Pukird S, et al. Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Physica B, 2008, 403(19-20): 3713 doi: 10.1016/j.physb.2008.06.020
    [17]
    Chen G, Li L, Tao C Y, et al. Effects of microwave heating on microstructures and structure properties of the manganese ore. J Alloys Compd, 2016, 657: 515 doi: 10.1016/j.jallcom.2015.10.147
    [18]
    Anas S, Rahul S, Babitha K B, et al. Microwave accelerated synthesis of zinc oxide nanoplates and their enhanced photocatalytic activity under UV and solar illuminations. Appl Surf Sci, 2015, 355: 98 doi: 10.1016/j.apsusc.2015.07.058
    [19]
    Lavand A B, Malghe Y S. Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres. J Asian Ceram Soc, 2015, 3(3): 305 doi: 10.1016/j.jascer.2015.06.002
    [20]
    景曉燕, 匡巍巍, 劉婧媛. 微波水熱法一步合成微米氧化鋅粒子. 功能材料, 2008, 39(7):1186 doi: 10.3321/j.issn:1001-9731.2008.07.038

    Jing X Y, Kuang W W, Liu J Y. One-step preparation of zinc oxide micron-powders by microwave hydrolysis. J Funct Mater, 2008, 39(7): 1186 doi: 10.3321/j.issn:1001-9731.2008.07.038
    [21]
    Shaporev A S, Ivanov V K, Baranchikov A E, et al. Microwave-assisted hydrothermal synthesis and photocatalytic activity of ZnO. Inorg Mater, 2007, 43(1): 35 doi: 10.1134/S0020168507010098
    [22]
    Music S, Saric A, Popovic S. Formation of nanosize ZnO particles by thermal decomposition of zinc acetylacetonate monohydrate. Ceram Int, 2010, 36(3): 1117 doi: 10.1016/j.ceramint.2009.12.008
    [23]
    Mendoza-Mendoza E, Nunez-Briones A G, Garcia-Cerda L A, et al. One-step synthesis of ZnO and Ag/ZnO heterostructures and their photocatalytic activity. Ceram Int, 2018, 44(6): 6176 doi: 10.1016/j.ceramint.2018.01.001
    [24]
    Huang J F, Xia C K, Cao L Y, et al. Facile microwave hydrothermal synthesis of zinc oxide one-dimensional nanostructure with three-dimensional morphology. Mater Sci Eng B, 2008, 150(3): 187 doi: 10.1016/j.mseb.2008.05.014
    [25]
    Cao G X, Hong K Q, Wang W D, et al. Fast growth of well-aligned ZnO nanowire arrays by a microwave heating method and their photocatalytic properties. Nanotechnology, 2016, 27(43): 435402 doi: 10.1088/0957-4484/27/43/435402
    [26]
    Xu A J, Feng S S, Shen S J, et al. Enhanced visible light-responsive photocatalytic properties of Ag/BiPbO2Cl nanosheet composites. Nanoscale Res Lett, 2018, 13: 292 doi: 10.1186/s11671-018-2706-z
    [27]
    Baruah S, Dutta J. Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater, 2009, 10(1): 013001 doi: 10.1088/1468-6996/10/1/013001
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)

    Article views (6688) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频