<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 5
May  2020
Turn off MathJax
Article Contents
WANG Zhu, FENG Zhe, ZHANG Lei, LU Min-xu. Current application and development trend in electrochemical measurement methods for the corrosion study of stainless steels[J]. Chinese Journal of Engineering, 2020, 42(5): 549-556. doi: 10.13374/j.issn2095-9389.2019.05.15.002
Citation: WANG Zhu, FENG Zhe, ZHANG Lei, LU Min-xu. Current application and development trend in electrochemical measurement methods for the corrosion study of stainless steels[J]. Chinese Journal of Engineering, 2020, 42(5): 549-556. doi: 10.13374/j.issn2095-9389.2019.05.15.002

Current application and development trend in electrochemical measurement methods for the corrosion study of stainless steels

doi: 10.13374/j.issn2095-9389.2019.05.15.002
More Information
  • Corresponding author: E-mail: zhanglei@ustb.edu.cn
  • Received Date: 2019-05-15
  • Publish Date: 2020-05-01
  • Carbon steels are prone to a high level of corrosion when exposed to harsh environments. Stainless steels, having better corrosion resistance, are therefore, used in many applications to mitigate the high risk of failure due to corrosion. However, stainless steels are also not 100% corrosion-resistant; hence, they may suffer uniform corrosion, pitting corrosion, and/or corrosion cracking. It is, therefore, necessary to evaluate the corrosion resistance of stainless steel prior to its large-scale applications. The two main techniques used in studying the corrosion behavior of stainless steels are the immersion and electrochemical tests. Due to the high corrosion resistance of stainless steels, analyzing its corrosion behavior using the immersion test method takes a long period. Consequently, the application of the immersion test method is highly limited. The electrochemical methods are, therefore, widely used due to its faster rate of evaluation of corrosion behavior and mechanisms. The most commonly used electrochemical methods in the corrosion assessment of stainless steels include the corrosion potential test, AC impedance test, potentiostatic test, and cyclic polarization test. This paper introduced these four electrochemical methods of corrosion evaluation of stainless steels. The advantages and disadvantages of various detection methods were also clarified. Long-period corrosion monitoring can be achieved with the implementation of corrosion potential and AC impedance methods, due to their nondestructive features. The polarization characteristic parameters of materials can be obtained by analyzing the potentiostatic or potentiodynamic polarization results. These help to evaluate the corrosion resistance of materials. Comprehensive utilization of various electrochemical methods is beneficial to the analysis of corrosion mechanisms. Given the current research status and trend of corrosion in stainless steel, the electrochemical method is projected to be mainly implemented in the control of the corrosion processes. Therefore, there is need for better detection technologies to achieve a better analysis of the corrosion processes of stainless steels.

     

  • loading
  • [1]
    霍東興, 梁精龍, 李慧, 等. 腐蝕電化學技術應用研究進展. 熱加工工藝, 2017, 46(10):18

    Huo D X, Liang J L, Li H, et al. Research progress of application of electrochemical corrosion technology. Hot Work Technol, 2017, 46(10): 18
    [2]
    Wang Z, Tang X, Xue J P, et al. The pitting behavior of stainless steels under SO2 environments with Cl? and F? // CORROSION 2017. New Orleans, 2017: NACE-2017-9241
    [3]
    Choi Y S, Nesic S, Ling S. Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions. Electrochim Acta, 2011, 56(4): 1752 doi: 10.1016/j.electacta.2010.08.049
    [4]
    Wang Z, Zhang L, Tang X, et al. Investigation of the deterioration of passive films in H2S-containing solutions. Int J Miner Metall Mater, 2017, 24(8): 943 doi: 10.1007/s12613-017-1482-6
    [5]
    Ding J H, Zhang L, Lu M X, et al. The electrochemical behaviour of 316L austenitic stainless steel in Cl? containing environment under different H2S partial pressures. Appl Surf Sci, 2014, 289: 33 doi: 10.1016/j.apsusc.2013.10.080
    [6]
    Davoodi A, Pakshir M, Babaiee M, et al. A comparative H2S corrosion study of 304L and 316L stainless steels in acidic media. Corros Sci, 2011, 53(1): 399 doi: 10.1016/j.corsci.2010.09.050
    [7]
    Rhodes P R. Environment-assisted cracking of corrosion-resistant alloys in oil and gas production environments: A review. Corrosion, 2001, 57(11): 923 doi: 10.5006/1.3290320
    [8]
    Jones S, Li Y X, Coley K S, et al. Corrosion potential oscillations of nickel-containing stainless steel in concentrated sulphuric acid: II Mechanism and kinetic modelling. Corros Sci, 2010, 52(1): 250 doi: 10.1016/j.corsci.2009.09.012
    [9]
    Li Y X, Ives M B, Coley K S, et al. Corrosion of nickel-containing stainless steel in concentrated sulphuric acid. Corros Sci, 2004, 46(8): 1969 doi: 10.1016/j.corsci.2003.10.017
    [10]
    Shen C, Xia D H, Fan H Q, et al. Passivation degradation of Alloy 800 in boiling solution containing thiosulphate. Electrochim Acta, 2017, 233: 13 doi: 10.1016/j.electacta.2017.03.037
    [11]
    Abelev E, Sellberg J, Ramanarayanan T A, et al. Effect of H2S on Fe corrosion in CO2-saturated brine. J Mater Sci, 2009, 44(22): 6167 doi: 10.1007/s10853-009-3854-4
    [12]
    Ben Salah M, Sabot R, Refait P, et al. Passivation behaviour of stainless steel (UNS N-08028) in industrial or simplified phosphoric acid solutions at different temperatures. Corros Sci, 2015, 99: 320 doi: 10.1016/j.corsci.2015.07.025
    [13]
    Ge H H, Zhou G D, Wu W Q. Passivation model of 316 stainless steel in simulated cooling water and the effect of sulfide on the passive film. Appl Surf Sci, 2003, 211(1-4): 321 doi: 10.1016/S0169-4332(03)00355-6
    [14]
    Duarte R G, Castela A S, Neves R, et al. Corrosion behavior of stainless steel rebars embedded in concrete: an electrochemical impedance spectroscopy study. Electrochim Acta, 2014, 124: 218 doi: 10.1016/j.electacta.2013.11.154
    [15]
    Luo H, Dong C F, Xiao K, et al. The passive behaviour of ferritic stainless steel containing alloyed tin in acidic media. RSC Adv, 2016, 6(12): 9940 doi: 10.1039/C5RA23698C
    [16]
    Li Y, Cheng Y F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials. Appl Surf Sci, 2017, 396: 144 doi: 10.1016/j.apsusc.2016.11.046
    [17]
    Wang Z, Zhang L, Tang X, et al. The surface characterization and passive behavior of Type 316L stainless steel in H2S-containing conditions. Appl Surf Sci, 2017, 423: 457 doi: 10.1016/j.apsusc.2017.06.214
    [18]
    Ebrahimi N, Momeni M, Kosari A, et al. A comparative study of critical pitting temperature (CPT) of stainless steels by electrochemical impedance spectroscopy (EIS), potentiodynamic and potentiostatic techniques. Corros Sci, 2012, 59: 96 doi: 10.1016/j.corsci.2012.02.026
    [19]
    Wang Z, Zhou Z Q, Zhang L, et al. Effect of pH on the electrochemical behaviour and passive film composition of 316L stainless steel. Acta Metall Sin (Engl Lett), 2019, 32(5): 585 doi: 10.1007/s40195-018-0794-5
    [20]
    Wang Z, Zhang L, Zhang Z R, et al. Combined effect of pH and H2S on the structure of passive film formed on type 316L stainless steel. Appl Surf Sci, 2018, 458: 686 doi: 10.1016/j.apsusc.2018.07.122
    [21]
    Fajardo S, Bastidas D M, Ryan M P, et al. Low-nickel stainless steel passive film in simulated concrete pore solution: A SIMS study. Appl Surf Sci, 2010, 256(21): 6139 doi: 10.1016/j.apsusc.2010.03.140
    [22]
    Alvarez S M, Bautista A, Velasco F. Corrosion behaviour of corrugated lean duplex stainless steels in simulated concrete pore solutions. Corros Sci, 2011, 53(5): 1748 doi: 10.1016/j.corsci.2011.01.050
    [23]
    Hamada E, Yamada K, Nagoshi M, et al. Direct imaging of native passive film on stainless steel by aberration corrected STEM. Corros Sci, 2010, 52(12): 3851 doi: 10.1016/j.corsci.2010.08.025
    [24]
    Zhang B W, Hao S J, Wu J S, et al. Direct evidence of passive film growth on 316 stainless steel in alkaline solution. Mater Charact, 2017, 131: 168 doi: 10.1016/j.matchar.2017.05.013
    [25]
    胡艷玲, 胡融剛, 邵敏華, 等. 不銹鋼鈍化膜形成和破壞過程的原位ECSTM研究. 金屬學報, 2001, 37(9):965 doi: 10.3321/j.issn:0412-1961.2001.09.015

    Hu Y L, Hu R G, Shao M H, et al. In situ ECSTEM investigation on formation and breakdown of passive film for polycrystalline stainless steel. Acta Metall Sin, 2001, 37(9): 965 doi: 10.3321/j.issn:0412-1961.2001.09.015
    [26]
    Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals. Nature Commun, 2018, 9: 2559 doi: 10.1038/s41467-018-04942-x
    [27]
    Ha H M, Fritzsche H. In-situ polarized neutron reflectometry study of the passive film growth on Fe-20Cr alloy. J Electrochem Soc, 2019, 166(11): C3064 doi: 10.1149/2.0081911jes
    [28]
    Liu Q, Ma R N, Du A, et al. Investigation on structure and corrosion resistance of complex inorganic passive film based on graphene oxide. Corros Sci, 2019, 150: 64 doi: 10.1016/j.corsci.2019.01.022
    [29]
    Yao J Z, Macdonald D D, Dong C F. Passive film on 2205 duplex stainless steel studied by photo-electrochemistry and ARXPS methods. Corros Sci, 2019, 146: 221 doi: 10.1016/j.corsci.2018.10.020
    [30]
    Yang Y Y, Liu Y Y, Cheng M L, et al. Enhancements of passive film and pitting resistance in chloride solution for 316LX austenitic stainless steel after Sn alloying. Acta Metall Sin (Engl Lett), 2019, 32(1): 98 doi: 10.1007/s40195-018-0855-9
    [31]
    Bard A J, Fan F R F, Kwak J, et al. Scanning electrochemical microscopy introduction and principal. Anal Chem, 1989, 61(2): 132 doi: 10.1021/ac00177a011
    [32]
    Zhang Q H, Ye Z N, Zhu Z J, et al. Separation and kinetic study of iron corrosion in acidic solution via a modified tip generation/substrate collection mode by SECM. Corros Sci, 2018, 139: 403 doi: 10.1016/j.corsci.2018.05.021
    [33]
    Filotás D, Fernández-Pérez B M, Kiss A, et al. Double barrel microelectrode assembly to prevent electrical field effects in potentiometric SECM imaging of galvanic corrosion processes. J Electrochem Soc, 2018, 165(5): C270 doi: 10.1149/2.0671805jes
    [34]
    Filotás D, Fernández-Pérez B M, Nagy L, et al. Potentiometric tip electrodes for improved visualization of galvanic corrosion processes using SECM // ECS Meeting Abstracts. Glasgow: The Electrochemical Society, 2019: 2268
    [35]
    ?rnek C, Leygraf C, Pan J S. Passive film characterisation of duplex stainless steel using scanning Kelvin probe force microscopy in combination with electrochemical measurements. NPJ Mater Degrad, 2019, 3: 8 doi: 10.1038/s41529-019-0071-8
    [36]
    Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros Sci, 2018, 134: 131 doi: 10.1016/j.corsci.2018.02.031
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)

    Article views (1635) PDF downloads(185) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频