<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 11
Dec.  2019
Turn off MathJax
Article Contents
LI Chang-hong, XIAO Yong-gang, WANG Yu, BU Lei, HOU Zhi-qiang. Review and prospects for understanding deformation and failure of rock slopes in cold regions with high altitude[J]. Chinese Journal of Engineering, 2019, 41(11): 1374-1386. doi: 10.13374/j.issn2095-9389.2019.05.07.004
Citation: LI Chang-hong, XIAO Yong-gang, WANG Yu, BU Lei, HOU Zhi-qiang. Review and prospects for understanding deformation and failure of rock slopes in cold regions with high altitude[J]. Chinese Journal of Engineering, 2019, 41(11): 1374-1386. doi: 10.13374/j.issn2095-9389.2019.05.07.004

Review and prospects for understanding deformation and failure of rock slopes in cold regions with high altitude

doi: 10.13374/j.issn2095-9389.2019.05.07.004
More Information
  • Research on the deformation and failure mechanism of rock slopes in high-altitude cold areas has obtained certain results, but based on the current theory and technology, it is difficult to comprehensively solve problems related to the cold-slope instability mechanisms and disaster prevention and control. As yet, no overall research system for high-altitude slope mining or criteria for slope stability have been established. In this paper, based on an extensive literature review, five measures of the deformation and failure of alpine rock slopes were presented, including the indoor rock mechanics test, simulation of physically similar slopes, multi-field multi-phase coupled numerical simulation, in-situ monitoring of deformation and damage, and the instability mechanism of rock slopes in high-altitude cold areas. After summarizing the research results related to the deformation and failure of alpine rock masses, existing problems were discussed and current research deficiencies were analyzed. The key problems that require urgent solutions in the research of the deformation and failure of alpine rock slopes were summarized. The first problem is the damage mechanism of a rock mass in a high-altitude cold area under mining disturbance conditions. The second problem is the aging characteristics and evaluation methods of the instability of a flow–solid–gas multi-phase multi-field coupled slope under freeze–thaw cycles. The future research direction and development trends in the deformation and failure of rock slopes in cold regions with high altitude were also analyzed. Research should be conducted on the following: (1) the damage degradation mechanism of rock masses with different stress paths coupled with freeze–thaw cycles, (2) the structural plane collapse mechanism and instability of rock slopes in high-altitude cold areas under the condition of blast mining, (3) the dynamic response and disaster occurrence law of jointed rock slopes in high-altitude cold areas under earthquake loading, (4) the mechanism of damage deterioration of jointed rock masses under multi-field and multi-phase coupling conditions, and (5) real-time safety monitoring and early-warning technology regarding the instability of multi-parameter cold resistance of mine slopes in high-altitude cold areas. These five research areas constitute the trends of future research.

     

  • loading
  • [1]
    中華人民共和國自然資源部. 全國礦產資源規劃(2016−2020年)[EB/OL]. 自然資源部 (2016−11−15)[2019−05−07]. http://g.mnr.gov.cn/201701/t20170123_1430456.html

    Ministry of Natural Resources of the People’s Republic of China. National Mineral Resources Planning (2016−2020)[EB/OL]. Ministry of Natural Resources (2016−11−15)[2019−05−07]. http://g.mnr.gov.cn/201701/t20170123_1430456.html
    [2]
    Ke B, Zhou K P, Deng H W, et al. NMR pore structure and dynamic characteristics of sandstone caused by ambient freeze-thaw action. Shock Vib, 2017, 2017: 1
    [3]
    ?nce ?, Fener M. A prediction model for uniaxial compressive strength of deteriorated pyroclastic rocks due to freeze–thaw cycle. J Afr Earth Sci, 2016, 120: 134 doi: 10.1016/j.jafrearsci.2016.05.001
    [4]
    Jia H L, Xiang W, Krautblatter M. Quantifying rock fatigue and decreasing compressive and tensile strength after repeated freeze-thaw cycles. Permafrost Periglac Processes, 2015, 26(4): 368 doi: 10.1002/ppp.1857
    [5]
    Han T L, Shi J P, Cao X S. Fracturing and damage to sandstone under coupling effects of chemical corrosion and freeze–thaw cycles. Rock Mech Rock Eng, 2016, 49(11): 4245 doi: 10.1007/s00603-016-1028-7
    [6]
    Chen Y L, Wu P, Yu Q, et al. Effects of freezing and thawing cycle on mechanical properties and stability of soft rock slope. Adv Mater Sci Eng, 2017, 2017: 1
    [7]
    Luo X D, Jiang N, Zuo C Q, et al. Damage characteristics of altered and unaltered diabases subjected to extremely cold freeze–thaw cycles. Rock Mech Rock Eng, 2014, 47(6): 1997 doi: 10.1007/s00603-013-0516-2
    [8]
    Ghobadi M H, Babazadeh R. Experimental studies on the effects of cyclic freezing–thawing, salt crystallization, and thermal shock on the physical and mechanical characteristics of selected sandstones. Rock Mech Rock Eng, 2015, 48(3): 1001 doi: 10.1007/s00603-014-0609-6
    [9]
    Fang X Y, Xu J Y, Wang P X. Compressive failure characteristics of yellow sandstone subjected to the coupling effects of chemical corrosion and repeated freezing and thawing. Eng Geol, 2018, 233: 160 doi: 10.1016/j.enggeo.2017.12.014
    [10]
    De Kock T, Boone M A, De Schryver T, et al. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze–thaw cycling. Environ Sci Technol, 2015, 49(5): 2867 doi: 10.1021/es505738d
    [11]
    楊更社, 魏堯, 申艷軍, 等. 凍結飽和砂巖三軸壓縮力學特性及強度預測模型研究. 巖石力學與工程學報, 2019, 38(4):683

    Yang G S, Wei Y, Shen Y J, et al. Mechanical behavior and strength forecast model of frozen saturated sandstone under triaxial compression. Chin J Rock Mech Eng, 2019, 38(4): 683
    [12]
    張慧梅, 夏浩峻, 楊更社, 等. 凍融循環和圍壓對巖石物理力學性質影響的試驗研究. 煤炭學報, 2018, 43(2):441

    Zhang H M, Xia H J, Yang G S, et al. Experimental research of influences of freeze-thaw cycles and confining pressure on physical-mechanical characteristics of rocks. J China Coal Soc, 2018, 43(2): 441
    [13]
    申艷軍, 楊更社, 王銘, 等. 凍融–周期荷載下單裂隙類砂巖損傷及斷裂演化試驗分析. 巖石力學與工程學報, 2018, 37(3):709

    Shen Y J, Yang G S, Wang M, et al. Experiments on the damage characteristics and fracture process of single-joint quasi-sandstone under the cyclic freezing-thawing and cyclic loading. Chin J Rock Mech Eng, 2018, 37(3): 709
    [14]
    申艷軍, 楊更社, 王銘, 等. 凍融循環過程中巖石熱傳導規律試驗及理論分析. 巖石力學與工程學報, 2016, 35(12):2417

    Shen Y J, Yang G S, Wang M, et al. Experimental and theoretical study on thermal conductivity of rock under cyclic freezing and thawing. Chin J Rock Mech Eng, 2016, 35(12): 2417
    [15]
    Zhang Q B, Zhao J. A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng, 2014, 47(4): 1411 doi: 10.1007/s00603-013-0463-y
    [16]
    Ke B, Zhou K P, Xu C S, et al. Dynamic mechanical property deterioration model of sandstone caused by freeze–thaw weathering. Rock Mech Rock Eng, 2018, 51(9): 2791 doi: 10.1007/s00603-018-1495-0
    [17]
    Wang P, Xu J Y, Fang X Y, et al. Energy dissipation and damage evolution analyses for the dynamic compression failure process of red-sandstone after freeze-thaw cycles. Eng Geol, 2017, 221: 104 doi: 10.1016/j.enggeo.2017.02.025
    [18]
    Wang P, Xu J Y, Liu S, et al. A prediction model for the dynamic mechanical degradation of sedimentary rock after a long-term freeze-thaw weathering: Considering the strain-rate effect. Cold Reg Sci Technol, 2016, 131: 16 doi: 10.1016/j.coldregions.2016.08.003
    [19]
    Wang P, Xu J Y, Liu S, et al. Static and dynamic mechanical properties of sedimentary rock after freeze-thaw or thermal shock weathering. Eng Geol, 2016, 210: 148 doi: 10.1016/j.enggeo.2016.06.017
    [20]
    Zhou K P, Li B, Li J L, et al. Microscopic damage and dynamic mechanical properties of rock under freeze–thaw environment. Trans Nonferrous Met Soc China, 2015, 25(4): 1254 doi: 10.1016/S1003-6326(15)63723-2
    [21]
    Li J L, Kaunda R B, Zhou K P. Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone. Cold Reg Sci Technol, 2018, 154: 133 doi: 10.1016/j.coldregions.2018.06.015
    [22]
    Zhang J, Deng H W, Deng J R, et al. Development of energy-based brittleness index for sandstone subjected to freeze-thaw cycles and impact loads. IEEE Access, 2018, 6: 48522 doi: 10.1109/ACCESS.2018.2867349
    [23]
    Liu C J, Deng H W, Zhao H T, et al. Effects of freeze-thaw treatment on the dynamic tensile strength of granite using the Brazilian test. Cold Reg Sci Technol, 2018, 155: 327 doi: 10.1016/j.coldregions.2018.08.022
    [24]
    Ma Q Y, Ma D D, Yao Z M. Influence of freeze-thaw cycles on dynamic compressive strength and energy distribution of soft rock specimen. Cold Reg Sci Technol, 2018, 153: 10 doi: 10.1016/j.coldregions.2018.04.014
    [25]
    李維光. 爆破振動作用下順層巖質邊坡穩定性研究[學位論文]. 成都: 西南交通大學, 2008

    Li W G. Study on Stability in Rocky Layered Slope under Blasting Vibration[Dissertation]. Chengdu: Southwest Jiaotong University, 2008
    [26]
    徐拴海. 多年凍巖露天煤礦邊坡穩定性演化規律研究[學位論文]. 西安: 西安理工大學, 2017

    Xu S H. Stability Evolution Law of Open-oit Coal Mine Slope in High-altitude Permafrost Area[Dissertation]. Xi’an: Xi’an University of Technology, 2017
    [27]
    Yang C W, Zhang J J, Liu F C, et al. Analysis on two typical landslide hazard phenomena in the Wenchuan earthquake by field investigations and shaking table tests. Int J Environ Res Public Health, 2015, 12(8): 9181 doi: 10.3390/ijerph120809181
    [28]
    Huang R Q, Zhao J J, Ju N P, et al. Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China. Nat Hazards, 2013, 68(2): 1021 doi: 10.1007/s11069-013-0671-5
    [29]
    Che A L, Yang H K, Wang B, et al. Wave propagations through jointed rock masses and their effects on the stability of slopes. Eng Geol, 2016, 201: 45 doi: 10.1016/j.enggeo.2015.12.018
    [30]
    Fan G, Zhang J J, Wu J B, et al. Dynamic response and dynamic failure mode of a weak intercalated rock slope using a shaking table. Rock Mech Rock Eng, 2016, 49(8): 3243 doi: 10.1007/s00603-016-0971-7
    [31]
    Zhang Z L, Wang T, Wu S R, et al. Seismic performance of loess-mudstone slope in Tianshui–Centrifuge model tests and numerical analysis. Eng Geol, 2017, 222: 225 doi: 10.1016/j.enggeo.2017.04.006
    [32]
    Li Y D, Cui J, Guan T D, et al. Investigation into dynamic response of regional sites to seismic waves using shaking table testing. Earthq Eng Eng Vib, 2015, 14(3): 411 doi: 10.1007/s11803-015-0033-2
    [33]
    黃震. 流固耦合作用下巖體滲流演化規律與突水災變機理研究[學位論文]. 徐州: 中國礦業大學, 2016

    Huang Z. Seepage Evolution in Rock Masses and Catastrophe Mechanism of Water Inrush under Liquid-Solid Coupling Effect[Dissertation]. Xuzhou: China University of Mining and Technology, 2016
    [34]
    楊忠平, 劉樹林, 劉永權, 等. 反復微震作用下順層及反傾巖質邊坡的動力穩定性分析. 巖土工程學報, 2018, 40(7):1277

    Yang Z P, Liu S L, Liu Y Q, et al. Dynamic stability analysis of bedding and toppling rock slopes under repeated micro-seismic action. Chin J Geotech Eng, 2018, 40(7): 1277
    [35]
    王來貴, 習彥會, 劉向峰, 等. 地震載荷作用下巖質邊坡應力狀態調整與破壞規律分析. 土木工程學報, 2015, 48(12):109

    Wang L G, Xi Y H, Liu X F, et al. Analysis on stress state adjustment and collapse of rock slope subject to seismic loads. Chin Civ Eng J, 2015, 48(12): 109
    [36]
    馮細霞, 姜清輝, 張慧超, 等. 巖質邊坡地震響應振動臺試驗研究. 振動、測試與診斷, 2018, 38(3):575

    Feng X X, Jiang Q H, Zhang H C, et al. Shaking table test on seismic response of rock slope. J Vib Meas Diagn, 2018, 38(3): 575
    [37]
    黃勇. 高寒山區巖體凍融力學行為及崩塌機制研究——以天山公路邊坡為例[學位論文]. 成都: 成都理工大學, 2012

    Huang Y. Research on Freeze-Thaw Mechanical Behavior of Rock Mass and Collapse Formation Mechanism along the Highway Located in Alpine and Strong Earthquake Regions——Taking Side Slope of Tianshan Highway as An Example[Dissertation]. Chengdu: Chengdu University of Technology, 2012
    [38]
    李國鋒, 李寧, 劉乃飛, 等. 基于FLAC3D的含相變三場耦合簡化算法. 巖石力學與工程學報, 2017, 36(增刊2): 3841

    Li G F, Li N, Liu N F, et al. Practical algorithm of THM coupling process with ice-water phase change based on FLAC3D. Chin J Rock Mech Eng, 2017, 36(Suppl 2): 3841
    [39]
    Huang S B, Liu Q S, Cheng A P, et al. A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application. Cold Reg Sci Technol, 2018, 145: 142 doi: 10.1016/j.coldregions.2017.10.015
    [40]
    Huang S B, Liu Q S, Cheng A P, et al. A fully coupled thermo-hydro-mechanical model including the determination of coupling parameters for freezing rock. Int J Rock Mech Min Sci, 2018, 103: 205 doi: 10.1016/j.ijrmms.2018.01.029
    [41]
    黃詩冰. 低溫裂隙巖體凍融損傷機理及多場耦合過程研究[學位論文]. 武漢: 中國科學院大學, 2016

    Huang S B. Study on the Mechanism of Freeze-thaw Damage and Multi-Field Coupling of Fractured Rock Mass under Low Temperature[Dissertation]. Wuhan: University of Chinese Academy of Sciences, 2016
    [42]
    劉乃飛. 寒區裂隙巖體變形−水分−熱質−化學四場耦合理論構架研究[學位論文]. 西安: 西安理工大學, 2017

    Liu N F. The Fully Coupled Modeling of the Deformation-Hydraulic-Thermal-Chemical Behavior for the Fractured Rock Mass in Cold Regions[Dissertation]. Xi’an: Xi’an University of Technology, 2017
    [43]
    Shen Y J, Yang G S, Huang H W, et al. The impact of environmental temperature change on the interior temperature of quasi-sandstone in cold region: experiment and numerical simulation. Eng Geol, 2018, 239: 241 doi: 10.1016/j.enggeo.2018.03.033
    [44]
    李濱鍔. 降雨作用下非飽和堆積邊坡固−液−氣耦合模型的數值分析[學位論文]. 成都: 成都理工大學, 2015

    Li B E. Numerical Analysis on Coupled Solid–Liquid–Air of Unsaturated Accumulation Soil Slope due to Rainfall[Dissertation]. Chengdu: Chengdu University of Technology, 2015
    [45]
    陳益峰, 周創兵, 童富果, 等. 多相流傳輸THM全耦合數值模型及程序驗證. 巖石力學與工程學報, 2009, 28(4):649 doi: 10.3321/j.issn:1000-6915.2009.04.001

    Chen Y F, Zhou C B, Tong F G, et al. Numerical model for fully coupled THM processes with multiphase flow and code validation. Chin J Rock Mech Eng, 2009, 28(4): 649 doi: 10.3321/j.issn:1000-6915.2009.04.001
    [46]
    班改革, 戴劍勇. 巖體固液氣三相多場耦合模型的構建. 南華大學學報: 自然科學版, 2017, 31(3):39

    Ban G G, Dai J Y. Construction of coupling model in solid-liquid-gas three phase rock mass. J Univ South China Sci Technol, 2017, 31(3): 39
    [47]
    Codeglia D, Dixon N, Fowmes G J, et al. Analysis of acoustic emission patterns for monitoring of rock slope deformation mechanisms. Eng Geol, 2017, 219: 21 doi: 10.1016/j.enggeo.2016.11.021
    [48]
    Codeglia D, Dixon N, Fowmes G J, et al. Strategies for rock slope failure early warning using acoustic emission monitoring //IOP Conference Series: Earth and Environmental Science. Warwick, 2015: 1
    [49]
    Smith A, Dixon N. Quantification of landslide velocity from active waveguide–generated acoustic emission. Can Geotech J, 2014, 52(4): 413
    [50]
    Dixon N, Spriggs M P, Smith A, et al. Quantification of reactivated landslide behaviour using acoustic emission monitoring. Landslides, 2015, 12(3): 549 doi: 10.1007/s10346-014-0491-z
    [51]
    Luo L H, Ma W, Zhang Z Q, et al. Freeze/thaw-induced deformation monitoring and assessment of the slope in permafrost based on terrestrial laser scanner and GNSS. Remote Sens, 2017, 9(3): 1
    [52]
    Teza G, Marcato G, Pasuto A, et al. Integration of laser scanning and thermal imaging in monitoring optimization and assessment of rockfall hazard: a case history in the Carnic Alps (Northeastern Italy). Nat Hazards, 2015, 76(3): 1535 doi: 10.1007/s11069-014-1545-1
    [53]
    Draebing D, Haberkorn A, Krautblatter M, et al. Thermal and mechanical responses resulting from spatial and temporal snow cover variability in permafrost rock slopes, Steintaelli, Swiss Alps. Permafrost Periglacial Processes, 2017, 28(1): 140 doi: 10.1002/ppp.1921
    [54]
    Atzeni C, Barla M, Pieraccini M, et al. Early warning monitoring of natural and engineered slopes with ground-based synthetic-aperture radar. Rock Mech Rock Eng, 2015, 48(1): 235 doi: 10.1007/s00603-014-0554-4
    [55]
    Di Matteo L, Romeo S, Kieffer D S. Rock fall analysis in an Alpine area by using a reliable integrated monitoring system: results from the Ingelsberg slope (Salzburg Land, Austria). Bull Eng Geol Environ, 2017, 76(2): 413 doi: 10.1007/s10064-016-0980-5
    [56]
    秦宏楠. 紫金山金銅礦排土場滑坡誘發機理及監測預警技術研究[學位論文]. 北京: 北京科技大學, 2016

    Qin H N. Study on Waste Dump Landslide Inducement Mechanism and Monitoring and Early Warning Technology of Zijinshan Gold and Copper Mine[Dissertation]. Beijing: University of Science and Technology Beijing, 2016
    [57]
    Meng Y S, Lan H X, Li L P, et al. Characteristics of surface deformation detected by X-band SAR interferometry over Sichuan-Tibet grid connection project area, China. Remote Sens, 2015, 7(9): 12265 doi: 10.3390/rs70912265
    [58]
    裴華富, 殷建華, 朱鴻鵠, 等. 基于光纖光柵傳感技術的邊坡原位測斜及穩定性評估方法. 巖石力學與工程學報, 2010, 29(8):1570

    Pei H F, Yin J H, Zhu H H, et al. In-situ monitoring of displacements and stability evaluation of slope based on fiber Bragg grating sensing technology. Chin J Rock Mech Eng, 2010, 29(8): 1570
    [59]
    張云龍. 北斗雙天線高精度變形監測關鍵技術及其應用研究[學位論文]. 北京: 北京交通大學, 2018

    Zhang Y L. Research on BDS Dual-Antenna Key Technology of High Precision Deformation Monitoring and Its Application[Dissertation]. Beijing: Beijing Jiaotong University, 2018
    [60]
    Subramanian S S, Ishikawa T, Tokoro T. Stability assessment approach for soil slopes in seasonal cold regions. Eng Geol, 2017, 221: 154 doi: 10.1016/j.enggeo.2017.03.008
    [61]
    Korshunov A A, Doroshenko S P, Nevzorov A L. The impact of freezing-thawing process on slope stability of earth structure in cold climate. Procedia Eng, 2016, 143: 682 doi: 10.1016/j.proeng.2016.06.100
    [62]
    Zhou J W, Cui P, Hao M H. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Landslides, 2016, 13(1): 39 doi: 10.1007/s10346-014-0553-2
    [63]
    Li M, Song Y, Chen F. Analyses on stability of slope in a typical cold region based on thermo-mechanical coupling. Bulg Chem Commun, 2016, 48: 96
    [64]
    劉泉聲, 黃詩冰, 康永水, 等. 裂隙巖體凍融損傷研究進展與思考. 巖石力學與工程學報, 2015, 34(3):452

    Liu Q S, Huang, S B, Kang Y S, et al. Advance and review on freezing-thawing damage of fractured rock. Chin J Rock Mech Eng, 2015, 34(3): 452
    [65]
    周志東, 陶然, 黨永平. 高原高寒地區邊坡變形破壞機制與綜合治理技術. 成都: 西南交通大學出版社, 2015

    Zhou Z D, Tao R, Dang Y P. Deformation and Failure Mechanism and Comprehensive Treatment Technology of Slope in Plateau Alpine Region. Chengdu: Southwest Jiaotong University Press, 2015
    [66]
    Li J L, Zhou K P, Liu W J, et al. Analysis of the effect of freeze–thaw cycles on the degradation of mechanical parameters and slope stability. Bull Eng Geol Environ, 2018, 77(2): 573 doi: 10.1007/s10064-017-1013-8
    [67]
    Luo X D, Jiang N, Fan X Y, et al. Effects of freeze–thaw on the determination and application of parameters of slope rock mass in cold regions. Cold Reg Sci Technol, 2015, 110: 32 doi: 10.1016/j.coldregions.2014.11.002
    [68]
    賈海梁, 項偉, 申艷軍, 等. 凍融循環作用下巖石疲勞損傷計算中關鍵問題的討論. 巖石力學與工程學報, 2017, 36(2):335

    Jia H L, Xiang W, Shen Y J, et al. Discussion of the key issues within calculation of the fatigue damage of rocks subjected to freeze-thaw cycles. Chin J Rock Mech Eng, 2017, 36(2): 335
    [69]
    紀洪廣, 向鵬, 韓放, 等. 地下開采擾動條件下露天礦邊坡巖體結構變異與失穩模式分析. 煤炭學報, 2012, 37(2):211

    Ji H G, Xiang P, Han F, et al. Structural changes and failure mode of open-pit slope under underground mining disturbance. J China Coal Soc, 2012, 37(2): 211
    [70]
    姚文敏, 胡斌, 余海兵, 等. 三維軟硬互層邊坡的破壞模式與穩定性研究. 工程科學學報, 2017, 39(2):182

    Yao W M, Hu B, Yu H B, et al. Numerical analysis of the failure modes and stability of 3D slopes with interbreeding of soft and hard rocks. Chin J Eng, 2017, 39(2): 182
    [71]
    楊天鴻, 張鋒春, 于慶磊, 等. 露天礦高陡邊坡穩定性研究現狀及發展趨勢. 巖土力學, 2011, 32(5):1437 doi: 10.3969/j.issn.1000-7598.2011.05.025

    Yang T H, Zhang F C, Yu Q L, et al. Research situation of open-pit mining high and steep slope stability and its developing trend. Rock Soil Mech, 2011, 32(5): 1437 doi: 10.3969/j.issn.1000-7598.2011.05.025
    [72]
    李建峰, 萬臣, 趙勇. 高寒高海拔地區巖質邊坡穩定性評價研究. 重慶交通大學學報: 自然科學版, 2015, 34(2):45

    Li J F, Wan C, Zhao Y. Evaluation study of rock slope stability in alpine high altitude region. J Chongqing Jiaotong Univ Nat Sci, 2015, 34(2): 45
    [73]
    喬國文, 王運生, 楊新龍. 凍融風化邊坡巖體質量評價體系研究. 巖土力學, 2015, 36(2):515

    Qiao G W, Wang Y S, Yang X L. Study of rock mass quality evaluation system of freezing-thawing and weathering slopes. Rock Soil Mech, 2015, 36(2): 515
    [74]
    王斌, 馮夏庭, 潘鵬志, 等. 物質點法在邊坡穩定性評價中的應用研究. 巖石力學與工程學報, 2017, 36(9):2146

    Wang B, Feng X T, Pan P Z, et al. Slope failure analysis using the material point method. Chin J Rock Mech Eng, 2017, 36(9): 2146
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (1525) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频