Citation: | HUANG Wei, WANG Yu-jiang, WEI Shi-cheng, LIANG yi, WANG bo, HUANG Yu-wei, XU Bin-shi. Fabrication and microwave absorption properties of myrica rubra-like Fe3O4@SnO2 core-shell material[J]. Chinese Journal of Engineering, 2020, 42(5): 635-644. doi: 10.13374/j.issn2095-9389.2019.05.05.001 |
[1] |
黃玉煒, 王玉江, 魏世丞, 等. Co摻雜對RGO/Fe3O4復合材料組織結構和吸波性能的影響. 工程科學學報, 2018, 40(7):849
Huang Y W, Wang Y J, Wei S C, et al. Effect of Co-doping on the microstructure and microwave absorbing properties of RGO/Fe3O4 composites. Chin J Eng, 2018, 40(7): 849
|
[2] |
Zheng J, Yu Z X, Ji G B, et al. Reduction synthesis of FexOy@SiO2 core-shell nanostructure with enhanced microwave-absorption properties. J Alloys Compd, 2014, 602: 8 doi: 10.1016/j.jallcom.2014.03.002
|
[3] |
Zhou C, Geng S, Xu X W, et al. Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in micro absorption. Carbon, 2016, 108: 234 doi: 10.1016/j.carbon.2016.07.015
|
[4] |
Zhao B, Shao G, Fan B B, et al. Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells. Phys Chem Chem Phys, 2015, 17(14): 8802 doi: 10.1039/C4CP05632A
|
[5] |
Liu Y, Cui T T, Wu T, et al. Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach. Nanotechnology, 2016, 27(16): 165707 doi: 10.1088/0957-4484/27/16/165707
|
[6] |
Hu C G, Mo Z Y, Lu G W, et al. 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys Chem Chem Phys, 2013, 15(31): 13038 doi: 10.1039/c3cp51253c
|
[7] |
Feng H T, Zhuo R F, Chen J T, et al. Synthesis, characterization, and microwave absorption property of the SnO2 nanowire/paraffin composites. Nanoscale Res Lett, 2009, 4(12): 1452 doi: 10.1007/s11671-009-9419-2
|
[8] |
Lian P C, Zhu X F, Liang S Z, et al. High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta, 2011, 56(12): 4532 doi: 10.1016/j.electacta.2011.01.126
|
[9] |
Wang Y, Dai X Q, Jiang W C, et al. The hybrid of SnO2 nanoparticle and polypyrrole aerogel: An excellent electromagnetic wave absorbing materials. Mater Res Exp, 2016, 3(7): 075023 doi: 10.1088/2053-1591/3/7/075023
|
[10] |
Zhao B, Guo X Q, Zhao W Y, et al. Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl Mater Interfaces, 2016, 8(42): 28917 doi: 10.1021/acsami.6b10886
|
[11] |
黃威, 魏世丞, 梁義, 等. 核殼結構復合吸波材料研究進展. 工程科學學報, 2019, 41(5):547
Huang W, Wei S C, Liang Y, et al. Research progress of core-shell composite absorbing materials. Chin J Eng, 2019, 41(5): 547
|
[12] |
Liu J W, Che R C, Chen H J, et al. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small, 2012, 8(8): 1214 doi: 10.1002/smll.201102245
|
[13] |
Li R Z, Ren X, Zhang F, et al. Synthesis of Fe3O4@SnO2 core-shell nanorod film and its application as a thin-film supercapacitor electrode. Chem Commun, 2012, 48(41): 5010 doi: 10.1039/c2cc31786a
|
[14] |
Li J, Chen Y, Wu Q S, et al. Synthesis of sea-urchin-like Fe3O4/SnO2 heterostructures and its application for environmental remediation by removal of p-chlorophenol. J Mater Sci, 2019, 54(2): 1341 doi: 10.1007/s10853-018-2899-7
|
[15] |
Feng J T, Hou Y H, Wang Y C, et al. Synthesis of hierarchical ZnFe2O4@SiO2@RGO core-shell microspheres for enhanced electromagnetic wave absorption. ACS Appl Mater Interfaces, 2017, 9(16): 14103 doi: 10.1021/acsami.7b03330
|
[16] |
Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci, 2008, 254(8): 2441 doi: 10.1016/j.apsusc.2007.09.063
|
[17] |
杜海英, 姚朋軍, 王兢, 等. 異質復合結構納米纖維SnO2/ZnO的制備及其氣敏特性研究. 無機材料學報, 2018, 33(4):453 doi: 10.15541/jim20170218
Du H Y, Yao P J, Wang J, et al. Preparation and gas sensing property of SnO2/ZnO composite hetero-nanofibers using two-step method. J Inorg Mater, 2018, 33(4): 453 doi: 10.15541/jim20170218
|
[18] |
Ashok A, Vijayaraghavan S N, Unni G E, et al. On the physics of dispersive electron transport characteristics in SnO2 nanoparticle-based dye sensitized solar cells. Nanotechnology, 2018, 29(17): 175401 doi: 10.1088/1361-6528/aaae45
|
[19] |
Li Z W, Yang Z H. Microwave absorption properties and mechanism for hollow Fe3O4 nanosphere composites. J Magn Magn Mater, 2015, 387: 131 doi: 10.1016/j.jmmm.2015.03.087
|
[20] |
Lou X W, Yuan C, Archer L A. Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv Mater, 2007, 19(20): 3328 doi: 10.1002/adma.200700357
|
[21] |
Du Y C, Liu W W, Qiang R, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Interfaces, 2014, 6(15): 12997 doi: 10.1021/am502910d
|
[22] |
Tian C H, Du Y C, Cui C S, et al. Synthesis and microwave absorption enhancement of yolk-shell Fe3O4@C microspheres. J Mater Sci, 2017, 52(11): 6349 doi: 10.1007/s10853-017-0866-3
|
[23] |
Park M J, Kim S S. Design of wide bandwidth pyramidal microwave absorbers using ferrite composites with broad magnetic loss spectra. Electron Mater Lett, 2016, 12(5): 610 doi: 10.1007/s13391-016-6061-x
|
[24] |
Alam R S, Moradi M, Nikmanesh H. Influence of multi-walled carbon nanotubes (MWCNTs) volume percentage on the magnetic and microwave absorbing properties of BaMg0.5Co0.5TiFe10O19/MWCNTs nanocomposites. Mater Res Bull, 2016, 73: 261 doi: 10.1016/j.materresbull.2015.09.016
|
[25] |
謝建良, 梁波浪, 鄧龍江. 二氧化硅包覆片狀金屬磁性微粉電磁特性分析. 功能材料, 2008, 39(1):41 doi: 10.3321/j.issn:1001-9731.2008.01.013
Xie J L, Liang B L, Deng L J. Electromagnetic parameters analysis of SiO2 coat flaky metal magnetic powder. J Funct Mater, 2008, 39(1): 41 doi: 10.3321/j.issn:1001-9731.2008.01.013
|
[26] |
Sui M X, Sun X D, Lou H F, et al. Synthesis of hollow Fe3O4 particles via one-step solvothermal approach for microwave absorption materials: effect of reactant concentration, reaction temperature and reaction time. J Mater Sci Mater Electron, 2018, 29(9): 7539 doi: 10.1007/s10854-018-8746-4
|
[27] |
Hornyak G L, Patrissi C J, Martin C R. Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell-Garnett limit. J Phys Chem B, 1997, 101(9): 1548 doi: 10.1021/jp962685o
|
[28] |
Meng F B, Wang H G, Huang F, et al. Graphene-based microwave absorbing composites: a review and prospective. Compos Part B Eng, 2018, 137: 260 doi: 10.1016/j.compositesb.2017.11.023
|
[29] |
王濤, 張峻銘, 王鵬, 等. 吸波材料吸波機制及吸波劑性能優劣評價方法. 磁性材料及器件, 2016, 47(6):7 doi: 10.3969/j.issn.1001-3830.2016.06.002
Wang T, Zhang J M, Wang P, et al. The absorption mechanism of radar absorber and performance evaluation criterion of absorbent. J Magn Mater Device, 2016, 47(6): 7 doi: 10.3969/j.issn.1001-3830.2016.06.002
|