Citation: | FU Li-wei, WU Sen. A new internal clustering validation index for categorical data based on concentration of attribute values[J]. Chinese Journal of Engineering, 2019, 41(5): 682-693. doi: 10.13374/j.issn2095-9389.2019.05.015 |
[1] |
Cornuéjols A, Wemmert C, Gan?arski P, et al. Collaborative clustering: why, when, what and how. Inf Fusion, 2017, 39: 81
|
[2] |
楊虎, 付宇, 范丹. 噪音特征對聚類內部有效性的影響. 計算機科學, 2018, 45(7): 22 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201807004.htm
Yang H, Fu Y, Fan D. Influence of noisy features on internal validation of clustering. Comput Sci, 2018, 45(7): 22 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201807004.htm
|
[3] |
Cheung Y M, Jia H. Categorical-and-numerical-attribute data clustering based on a unified similarity metric without knowing cluster number. Pattern Recognit, 2013, 46(8): 2228 doi: 10.1016/j.patcog.2013.01.027
|
[4] |
dos Santos T R L, Zárate L E. Categorical data clustering: what similarity measure to recommend?. Expert Syst Appl, 2015, 42(3): 1247 doi: 10.1016/j.eswa.2014.09.012
|
[5] |
武森, 姜丹丹, 王薔. 分類屬性數據聚類算法HABOS. 工程科學學報, 2016, 38(7): 1017 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201607018.htm
Wu S, Jiang D D, Wang Q. HABOS clustering algorithm for categorical data. Chin J Eng, 2016, 38(7): 1017 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201607018.htm
|
[6] |
Ilango V, Subramanian R, Vasudevan V. Cluster analysis research design model, problems, issues, challenges, trends and tools. Int J Comput Sci Eng, 2011, 3(8): 3064
|
[7] |
Huang D, Lai J H, Wang C D. Ensemble clustering using factor graph. Pattern Recognit, 2016, 50: 131 doi: 10.1016/j.patcog.2015.08.015
|
[8] |
黃棟, 王昌棟, 賴劍煌, 等. 基于決策加權的聚類集成算法. 智能系統學報, 2016, 11(3): 418 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201603018.htm
Huang D, Wang C D, Lai J H, et al. Clustering ensemble by decision weighting. CAAI Trans Intell Syst, 2016, 11(3): 418 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201603018.htm
|
[9] |
Zhao X W, Liang J Y, Dang C Y. Clustering ensemble selection for categorical data based on internal validity indices. Pattern Recognit, 2017, 69: 150 doi: 10.1016/j.patcog.2017.04.019
|
[10] |
Jaskowiak P A, Moulavi D, Furtado A C S, et al. On strategies for building effective ensembles of relative clustering validity criteria. Knowledge Inf Syst, 2016, 47(2): 329 doi: 10.1007/s10115-015-0851-6
|
[11] |
Yu Z W, Li L, Gao Y J, et al. Hybrid clustering solution selection strategy. Pattern Recognit, 2014, 47(10): 3362 doi: 10.1016/j.patcog.2014.04.005
|
[12] |
Li F J, Qian Y H, Wang J T, et al. Cluster's quality evaluation and selective clustering ensemble. ACM Trans Knowledge Discovery Data, 2018, 12(5): 60
|
[13] |
Larsen B, Aone C. Fast and effective text mining using linear-time document clustering // Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, 1999: 16
|
[14] |
Halkidi M, Batistakis Y, Vazirgiannis M. Cluster validity methods: Part I. ACM SIGMOD Record, 2002, 31(2): 40 doi: 10.1145/565117.565124
|
[15] |
Halkidi M, Batistakis Y, Vazirgiannis M. Clustering validity checking methods: Part Ⅱ. SIGMOD Record, 2002, 31(3): 19 doi: 10.1145/601858.601862
|
[16] |
Fu L W, Wu S. An internal clustering validation index for boolean data. Cybernetics Inf Technol, 2016, 16(6): 232 doi: 10.1515/cait-2016-0091
|
[17] |
Gluck M. Information, uncertainty, and the utility of categories // Proceedings of the Seventh Annual Conference of the Cognitive Science Society. Irvine, 1985: 283
|
[18] |
Bai L, Liang J Y. Cluster validity functions for categorical data: a solution-space perspective. Data Min Knowledge Discovery, 2015, 29(6): 1560 doi: 10.1007/s10618-014-0387-5
|
[19] |
Chang C H, Ding Z K. Categorical data visualization and clustering using subjective factors. Data Knowledge Eng, 2005, 53(3): 243 doi: 10.1016/j.datak.2004.09.001
|
[20] |
Barbará D, Li Y, Couto J. COOLCAT: an entropy-based algorithm for categorical clustering // Proceedings of the 11th International Conference of Information Knowledge Management. McLean, 2002: 582
|
[21] |
Xiong H, Wu J J, Chen J. K-means clustering versus validation measures: a data distribution perspective. IEEE Trans Syst Man Cybern B Cybern, 2009, 39(2): 318 doi: 10.1109/TSMCB.2008.2004559
|
[22] |
Sangam R S, Om H. The k-modes algorithm with entropy based similarity coefficient. Procedia Comput Sci, 2015, 50: 93 doi: 10.1016/j.procs.2015.04.066
|