Citation: | ZHANG Yong, CHANG Cui-rong, WANG Shi-wen, GAO Hai-li, YAN Ji, JIA Xiao-dong, LUO He-wei, GAO Ke-zheng, ZHANG Ai-qin. Preparation and supercapacitive performance of pinecone-like NiMoO4/MnO2 composite material[J]. Chinese Journal of Engineering, 2019, 41(5): 646-651. doi: 10.13374/j.issn2095-9389.2019.05.011 |
[1] |
陳雪丹, 陳碩翼, 喬志軍, 等. 超級電容器的應用. 儲能科學與技術, 2016, 5(6): 800 https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201606006.htm
Chen X D, Chen S Y, Qiao Z J, et al. Applications of supercapacitors. Energy Storage Sci Technol, 2016, 5(6): 800 https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201606006.htm
|
[2] |
趙雪, 邱平達, 姜海靜, 等. 超級電容器電極材料研究最新進展. 電子元件與材料, 2015, 34(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201501001.htm
Zhao X, Qiu P D, Jiang H J, et al. Latest research progress of electrode materials for supercapacitor. Electr Comp Mater, 2015, 34(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201501001.htm
|
[3] |
Oudghiri-Hassani H, Al Wadaani F. Preparation, characterization and catalytic activity of nickel molybdate (NiMoO4) nanoparticles. Molecules, 2018, 23(2): 273. doi: 10.3390/molecules23020273
|
[4] |
Fang L X, Wang F, Zhai T L, et al. Hierarchical CoMoO4 nanoneedle electrodes for advanced supercapacitors and electrocatalytic oxygen evolution. Electrochim Acta, 2018, 259: 552 doi: 10.1016/j.electacta.2017.11.012
|
[5] |
Li M G, Yang W W, Huang Y R, et al. Hierarchical mesoporous Co3O4@ZnCo2O4 hybrid nanowire arrays supported on Ni foam for high-performance asymmetric supercapacitors. Sci China Mater, 2018, 61(9): 1167 doi: 10.1007/s40843-017-9231-7
|
[6] |
Lee G H, Lee S, Kim J C, et al. MnMoO4 electrocatalysts for superior long-life and high-rate lithium-oxygen batteries. Adv Energy Mater, 2017, 7(6): 1601741 doi: 10.1002/aenm.201601741
|
[7] |
鄧霆. 超級電容器鈷基電極材料制備及其儲能機理的研究[學位論文]. 長春: 吉林大學, 2017
Deng T. Investigations of Co-based Electrode Materials for Supercapacitors and the Atomic-Level Energy Storage Mechanism[Dissertation]. Changchun: Jilin University, 2017
|
[8] |
Zhang Y, Feng H, Wu X B, et al. Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy, 2009, 34(11): 4889 doi: 10.1016/j.ijhydene.2009.04.005
|
[9] |
Lü J L, Miura H, Yang M. A novel mesoporous NiMoO4@rGO nanostructure for supercapacitor applications. Mater Lett, 2017, 194: 94 doi: 10.1016/j.matlet.2017.02.040
|
[10] |
Zhou D, Cheng P P, Luo J X, et al. Facile synthesis of graphene@NiMoO4 nanosheet arrays on Ni foam for a high-performance asymmetric supercapacitor. J Mater Sci, 2017, 52(24): 13909 doi: 10.1007/s10853-017-1467-x
|
[11] |
Zhang Z, Liu Y D, Huang Z Y, et al. Facile hydrothermal synthesis of NiMoO4@CoMoO4 hierarchical nanospheres for supercapacitor applications. Phys Chem Chem Phys, 2015, 17(32): 20795 doi: 10.1039/C5CP03331D
|
[12] |
Cao M L, Bu Y, Lü X W, et al. Three-dimensional TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays for lithium ion batteries. Appl Surf Sci, 2018, 435: 641 doi: 10.1016/j.apsusc.2017.11.165
|
[13] |
Chen H, Yu L, Zhang J M, et al. Construction of hierarchical NiMoO4@MnO2 nanosheet arrays on titanium mesh for supercapacitor electrodes. Ceram Int, 2016, 42(16): 18058 doi: 10.1016/j.ceramint.2016.08.094
|
[14] |
Zhao X, Wang H E, Chen X X, et al. Tubular MoO2 organized by 2D assemblies for fast and durable alkali-ion storage. Energy Storage Mater, 2018, 11: 161 doi: 10.1016/j.ensm.2017.10.010
|
[15] |
Li Y F, Jian J M, Fan Y, et al. Facile one-pot synthesis of a NiMoO4/reduced graphene oxide composite as a pseudocapacitor with superior performance. RSC Adv, 2016, 6(73): 69627 doi: 10.1039/C6RA13955H
|
[16] |
高海麗, 王力臻, 張勇, 等. Li2FeSiO4/C復合材料的制備及電化學性能. 硅酸鹽學報, 2014, 42(4): 528 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201404017.htm
Gao H L, Wang L Z, Zhang Y, et al. Synthesis and electrochemical performances of Li2FeSiO4/C composite materials. J Chin Ceramic Soc, 2014, 42(4): 528 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201404017.htm
|
[17] |
Wang X X, Zhang B Q, Yu M X, et al. Enhanced microwave absorption capacity of hierarchical structural MnO2@NiMoO4 composites. RSC Adv, 2016, 6(43): 36484 doi: 10.1039/C6RA05300A
|
[18] |
Cai D P, Wang D D, Liu B, et al. Three-dimensional Co3O4@NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage. ACS Appl Mater Interfaces, 2014, 6(7): 5050 doi: 10.1021/am500060m
|
[19] |
Pang M J, Jiang S, Ji Y, et al. Comparison of α-NiMoO4 nanorods and hierarchical α-NiMoO4@δ-MnO2 core-shell hybrid nanorod/nanosheet aligned on Ni foam for supercapacitors. J Alloys Compd, 2017, 708: 14 doi: 10.1016/j.jallcom.2017.02.282
|
[20] |
Ma X J, Zhang W B, Kong L B, et al. NiMoO4-modified MnO2 hybrid nanostructures on nickel foam: electrochemical performance and supercapacitor applications. New J Chem, 2015, 39(8): 6207 doi: 10.1039/C5NJ00639B
|
[21] |
孫薇. 納米氫氧化鎳(鈷)電極材料的制備及其電化學性能研究[學位論文]. 哈爾濱: 哈爾濱工程大學, 2012
Sun W. The Preparation of Nanometer Nickel (Cobalt) Hydroxide Electrode Materials and Their Electrchemical Properties[Dissertation]. Harbin: Harbin Engineering University, 2012
|
[22] |
Wang X H, Xia H Y, Gao J, et al. Enhanced cycle performance of ultraflexible asymmetric supercapacitors based on a hierarchical MnO2@NiMoO4 core-shell nanostructure and porous carbon. J Mater Chem A, 2016, 4(46): 18181 doi: 10.1039/C6TA07836B
|
[23] |
Kazemi S H, Bahmani F, Kazemi H, et al. Binder-free electrodes of NiMoO4/graphene oxide nanosheets: synthesis, characterization and supercapacitive behavior. RSC Adv, 2016, 6(112): 111170 doi: 10.1039/C6RA23076H
|
[24] |
Lin J H, Liang H Y, Jia H N, et al. Hierarchical CuCo2O4@NiMoO4 core-shell hybrid arrays as a battery-like electrode for supercapacitors. Inorg Chem Front, 2017, 4(9): 1575 doi: 10.1039/C7QI00361G
|