<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 5
May  2019
Turn off MathJax
Article Contents
ZHANG Hui-juan, ZHAO Mi-feng, ZHANG Lei, MA Lei, WANG Ya-wen, YUE Xiao-qi, LU Min-xu. Effect of tensile stress on corrosion behavior of 13Cr martensitic stainless steel[J]. Chinese Journal of Engineering, 2019, 41(5): 618-624. doi: 10.13374/j.issn2095-9389.2019.05.008
Citation: ZHANG Hui-juan, ZHAO Mi-feng, ZHANG Lei, MA Lei, WANG Ya-wen, YUE Xiao-qi, LU Min-xu. Effect of tensile stress on corrosion behavior of 13Cr martensitic stainless steel[J]. Chinese Journal of Engineering, 2019, 41(5): 618-624. doi: 10.13374/j.issn2095-9389.2019.05.008

Effect of tensile stress on corrosion behavior of 13Cr martensitic stainless steel

doi: 10.13374/j.issn2095-9389.2019.05.008
More Information
  • Corresponding author: ZHANG Lei, E-mail: Zhanglei@ustb.edu.cn
  • Received Date: 2018-05-02
  • Publish Date: 2019-05-01
  • Tubes in deep wells are subjected to the mixed effects of the environment and stress and thus suffer many failures. Therefore, studying the corrosion of materials under stress deformation is necessary. This paper aims to investigate the effect of applied tensile stress on the dissolution of passive film and the repair mechanism of L80-13Cr martensitic stainless steel in solution of 80 g·L-1 sodium chloride. Electrochemical tests were employed for measurements, where the main test measurements include open circuit potential (OCP), electrochemical impedance spectra (EIS), and potentiodynamic polarization tests. Contact angle measurement was combined with microscopic morphology analysis (Zoom stereo microscope) to investigate the surface activity. The test results show that there is the positive relation between applied tensile stress and the passivation characteristic of L80-13Cr martensitic stainless steel. Increase in the applied tensile stress negatively shifts the OCP value of L80-13Cr martensitic stainless steel, decreases the electron transfer resistance (Rt) and polarization resistance (Rp), and increases the rate of reaction; however, the passivation region significantly reduces, the passivation current density (Ecorr) increases, and the self-corrosion current density decreases, which forms at a high potential. The results of contact angle test and microscopic morphology analysis show that the applied tensile stress reduces the surface contact angle and promotes the pitting of L80-13Cr martensitic stainless steel. Applied tensile stress can increase the surface energy of L80-13Cr martensitic stainless steel, promote the dissolution of the passivation film, and inhibit the regeneration of the passivation film; thus, it can deteriorate the corrosion resistance of materials.

     

  • loading
  • [1]
    趙永峰, 王吉連, 左禹, 等. 在含CO2/H2S介質中油氣田用鋼的腐蝕研究進展. 石油化工腐蝕與防護, 2010, 27(1): 1 doi: 10.3969/j.issn.1007-015X.2010.01.001

    Zhao Y F, Wang J L, Zuo Y, et al. Research development of corrosion of steels in CO2/H2S-containing media in oil & gas fields. Corros Prot Petrochem Ind, 2010, 27(1): 1 doi: 10.3969/j.issn.1007-015X.2010.01.001
    [2]
    Abelev E, Sellberg J, Ramanarayanan T A, et al. Effect of H2S on Fe corrosion in CO2-saturated brine. J Mater Sci, 2009, 44(22): 6167 doi: 10.1007/s10853-009-3854-4
    [3]
    Li W F, Zhou Y J, Xue Y. Corrosion behavior of 110S tube steel in environments of high H2S and CO2 content. J Iron Steel Res Int, 2012, 19(12): 59 doi: 10.1016/S1006-706X(13)60033-3
    [4]
    Ma H Y, Cheng X L, Li G Q, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions. Corros Sci, 2000, 42(10): 1669 doi: 10.1016/S0010-938X(00)00003-2
    [5]
    Kimura M, Miyata Y, Sakata K, et al. Corrosion resistance of martensitic stainless steel OCTG in high temperature and high CO2 environment // Proceedings of the Corrosion 2004. New Orleans, 2004: 04118
    [6]
    古特曼З М. 金屬力學化學與腐蝕防護. 北京: 科學出版社, 1989
    [7]
    Despic A R, Raicheff R G, Bockris J O M. Mechanism of the acceleration of the electronic dissolution of metals during yielding under stress. J Chem Phys, 1968, 49(2): 926 doi: 10.1063/1.1670162
    [8]
    孫建波, 柳偉, 路民旭. 塑性變形條件下16MnR鋼的CO2腐蝕電化學行為. 材料工程, 2009(1): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200901015.htm

    Sun J B, Liu W, Lu M X. Electrochemical corrosion behavior of 16MnR steel with plastic strain in CO2 environment. J Mater Eng, 2009(1): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200901015.htm
    [9]
    Kim K M, Park J H, Kim H S, et al. Effect of plastic deformation on the corrosion resistance of ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuelcells. Int J Hydrogen Energy, 2012, 37(10): 8459 doi: 10.1016/j.ijhydene.2012.02.127
    [10]
    Jafari E. Corrosion behaviors of two types of commercial stainless steel after plastic deformation. J Mater Sci Technol, 2010, 26(9): 833 doi: 10.1016/S1005-0302(10)60133-8
    [11]
    Lu B T, Luo J L, Norton P R, et al. Effects of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral pH. Acta Mater, 2009, 57(1): 41 doi: 10.1016/j.actamat.2008.08.035
    [12]
    Li M C, Cheng Y F. Corrosion of the stressed pipe steel in carbonate-bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy. Electrochim Acta, 2008, 53(6): 2831 doi: 10.1016/j.electacta.2007.10.077
    [13]
    曹楚南. 腐蝕電化學原理. 3版. 北京: 化學工業出版社, 2008

    Cao C N. Principles of Electrochemistry of Corrosion. 3rd Ed. Beijing: Chemical Industry Press, 2008
    [14]
    Ren R K, Zhang S, Pang X L, et al. A novel observation of the interaction between the macroelastic stress and electrochemical corrosion of low carbon steel in 3.5wt% NaCl solution. Electrochim Acta, 2012, 85: 283 doi: 10.1016/j.electacta.2012.08.079
    [15]
    黃毓暉. 304不銹鋼氯離子腐蝕的力-化學行為研究[學位論文]. 上海: 華東理工大學, 2011

    Huang Y H. Mechano-chemical Effect in Chloride Corrosion of 304 Stainless Steel[Dissertation]. Shanghai: East China University of Science and Technology, 2011
    [16]
    Feaugas X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: back stress and effective stress. Acta Mater, 1999, 47(13): 3617 doi: 10.1016/S1359-6454(99)00222-0
    [17]
    Lu B T, Chen Z K, Luo J L, et al. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel. Electrochim Acta, 2005, 50(6): 1391 doi: 10.1016/j.electacta.2004.08.036
    [18]
    Sahal M, Creus J, Sabot R, et al. The effects of dislocation patterns on the dissolution process of polycrystalline nickel. Acta Mater, 2006, 54(8): 2157 doi: 10.1016/j.actamat.2006.01.006
    [19]
    林昌健, 馮祖德, 林福齡, 等. 18/8型不銹鋼在受力形變條件下腐蝕電化學行為的研究. 電化學, 1995, 1(4): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX504.010.htm

    Lin C J, Feng Z D, Lin F L, et al. Electrochemical behaviors of the loaded stainless steel in dilute thiosulphate solution. Electrochem, 1995, 1(4): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX504.010.htm
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (1576) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频