Citation: | LI Xia, YANG Ping, JIA Zhi-wei, ZHANG Hai-li. Effects of normalizing process and nitriding process on the microstructure, texture, and magnetic properties in low-temperature grain-oriented silicon steel[J]. Chinese Journal of Engineering, 2019, 41(5): 610-617. doi: 10.13374/j.issn2095-9389.2019.05.007 |
[1] |
Ling C, Xiang L, Qiu S T, et al. Effects of normalizing annealing on grain-oriented silicon steel. J Iron Steel Res Int, 2014, 21(7): 690 doi: 10.1016/S1006-706X(14)60107-2
|
[2] |
Li H, Feng Y L, Song M, et al. Effect of normalizing cooling process on microstructure and precipitates in low-temperature silicon steel. Trans Nonferrous Met Soc China, 2014, 24(3): 770 doi: 10.1016/S1003-6326(14)63124-1
|
[3] |
王若平, 黎世德, 方澤民, 等. 低溫熱軋高磁感取向硅鋼板常化組織及析出相研究. 金屬熱處理, 2009, 34(6): 9 doi: 10.3969/j.issn.1673-4971.2009.06.003
Wang R P, Li S D, Fang Z M, et al. Microstructure and precipitate of low temperature hot rolled HGO silicon steel plate by normalizing. Heat Treat Met, 2009, 34(6): 9 doi: 10.3969/j.issn.1673-4971.2009.06.003
|
[4] |
Shimizu Y, Ito Y, Iida Y. Formation of the Goss orientation near the surface of 3 pct silicon steel during hot rolling. Metall Trans A, 1986, 17(8): 1323 doi: 10.1007/BF02650113
|
[5] |
Liao C C, Hou C K. Effect of nitriding time on secondary recrystallization behaviors and magnetic properties of grain-oriented electrical steel. J Magn Magn Mater, 2010, 322(4): 434 doi: 10.1016/j.jmmm.2009.09.072
|
[6] |
王瑞, 楊平, 劉恭濤. 滲氮溫度對獲得抑制劑取向硅鋼粒子析出及退火組織的影響. 中國體視學與圖像分析, 2016, 21(3): 272 https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201603004.htm
Wang R, Yang P, Liu G T. Effect of nitriding temperature on inhibitor precipitation and the annealed microstructure of grain-oriented silicon steel produced by acquired inhibitor method. Chin J Stereology Image Anal, 2016, 21(3): 272 https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201603004.htm
|
[7] |
Ushigami Y, Kurosawa F, Masui H, et al. Precipitation behaviors of injected nitride inhibitors during secondary recrystallization annealing in grain oriented silicon steel. Mater Sci Forum, 1996, 204-206: 593 doi: 10.4028/www.scientific.net/MSF.204-206.593
|
[8] |
吳忠旺, 李軍, 趙宇, 等. 后天抑制劑獲得法制取向硅鋼析出物的轉化規律. 鋼鐵研究學報, 2011, 23(12): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201112012.htm
Wu Z W, Li J, Zhao Y, et al. Rules of precipitate transformation for grain-oriented silicon steel producted by acquired inhibitor method. J Iron Steel Res, 2011, 23(12): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201112012.htm
|
[9] |
吳忠旺, 趙宇, 李軍, 等. 低溫取向硅鋼高溫退火抑制劑的演化. 材料熱處理學報, 2011, 32(11): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201111020.htm
Wu Z W, Li J, Zhao Y, et al. Evolution of inhibitor in the annealing process at high temperature of low temperature hot roll and nitriding grain-oriented silicon steel. Trans Mater Heat Treat, 2011, 32(11): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201111020.htm
|
[10] |
宋惠軍, 楊平, 毛衛民. 電工鋼滲氮的氮行為. 金屬熱處理, 2012, 37(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201201009.htm
Song H J, Yang P, Mao W M. Nitrogen behavior during nitriding treatment of electrical steel. Heat Treat Met, 2012, 37(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201201009.htm
|
[11] |
Imamura T, Shingaki Y, Hayakawa Y. Effect of cold rolling reduction rate on secondary recrystallized texture in 3 pct Si-Fe steel. Metall Mater Trans A, 2013, 44(4): 1785 doi: 10.1007/s11661-012-1525-6
|
[12] |
Homma H, Hutchinson B. Orientation dependence of secondary recrystallization in silicon-iron. Acta Mater, 2003, 51(13): 3795 doi: 10.1016/S1359-6454(03)00193-9
|
[13] |
Kumano T, Haratani T, Fujii N. Effect of nitriding on grain oriented silicon steel bearing aluminum. ISIJ Int, 2005, 45(1): 95 doi: 10.2355/isijinternational.45.95
|
[14] |
Kumano T, Ohata Y, Fujii N, et al. Effect of nitriding on grain oriented silicon steel bearing aluminum (the second study). J Magn Magn Mater, 2006, 304(2): e602 doi: 10.1016/j.jmmm.2006.02.188
|
[15] |
Yoshitomi Y, Ushigami Y, Takahashi N, et al. Prediction method of sharpness of {110} < 001 > secondary recrystallization texture of Fe-3% Si alloy. Mater Sci Forum, 1996, 204-206: 629 doi: 10.4028/www.scientific.net/MSF.204-206.629
|
[16] |
Kim J K, Woo J S, Chang S K. Influence of annealing before cold rolling on the evolution of sharp Goss texture in Fe-3%Si alloy. J Magn Magn Mater, 2000, 215-216: 162 doi: 10.1016/S0304-8853(00)00103-7
|
[17] |
Harase J, Kurosawa F, Ushigami Y, et al. Change of magnetic induction of nitrided Fe-3%Si alloy during secondary recrystallization annealing. J Jpn Inst Met, 1995, 59(9): 917 doi: 10.2320/jinstmet1952.59.9_917
|
[18] |
Ushigami Y, Nakayama T, Suga Y, et al. Influence of secondary recrystallization temperature on secondary recrystallization texture in Fe-3%Si alloy. Mater Sci Forum, 1996, 204-206: 605 doi: 10.4028/www.scientific.net/MSF.204-206.605
|
[19] |
顏孟奇, 錢浩, 楊平, 等. 電工鋼中黃銅織構行為及其對Goss織構的影響. 金屬學報, 2012, 48(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201201004.htm
Yan M Q, Qian H, Yang P, et al. Behaviors of brass texture and its influence on Goss texture in grain oriented electrical steels. Acta Metall Sin, 2012, 48(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201201004.htm
|
[20] |
Yoshitomi Y, Ushigami Y, Harase J, et al. Coincidence grain boundary and role of primary recrystallized grain growth on secondary recrystallization texture evolution in Fe-3% Si alloy. Acta Metall Mater, 1994, 42(8): 2593 doi: 10.1016/0956-7151(94)90200-3
|
[21] |
Gangli P, Szpunar J A. The use of Σ operators in investigating secondary recrystallization of 3% silicon steel. Mater Sci Forum, 1994, 157-162: 953 doi: 10.4028/www.scientific.net/MSF.157-162.953
|
[22] |
Wang Y, Xu Y B, Zhang Y X, et al. On abnormal growth of {210}<001>grain in grain-oriented silicon steel. Mater Res Bull, 2015, 69: 138 doi: 10.1016/j.materresbull.2014.12.022
|