<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 5
May  2019
Turn off MathJax
Article Contents
LI Xia, YANG Ping, JIA Zhi-wei, ZHANG Hai-li. Effects of normalizing process and nitriding process on the microstructure, texture, and magnetic properties in low-temperature grain-oriented silicon steel[J]. Chinese Journal of Engineering, 2019, 41(5): 610-617. doi: 10.13374/j.issn2095-9389.2019.05.007
Citation: LI Xia, YANG Ping, JIA Zhi-wei, ZHANG Hai-li. Effects of normalizing process and nitriding process on the microstructure, texture, and magnetic properties in low-temperature grain-oriented silicon steel[J]. Chinese Journal of Engineering, 2019, 41(5): 610-617. doi: 10.13374/j.issn2095-9389.2019.05.007

Effects of normalizing process and nitriding process on the microstructure, texture, and magnetic properties in low-temperature grain-oriented silicon steel

doi: 10.13374/j.issn2095-9389.2019.05.007
More Information
  • Corresponding author: YANG Ping, E-mail: yangp@mater.ustb.edu.cn
  • Received Date: 2018-05-23
  • Publish Date: 2019-05-01
  • The influences of the normalization parameters and nitriding parameters on the microstructure of normalized samples, the primary recrystallization microstructure, and inhibitors were analyzed by electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM) techniques. The effects of normalizing cooling rates, nitriding temperatures and nitrogen content on the primary recrystallization and secondary recrystallization microstructure, textures, and properties were studied. The results show that grain sizes decrease with the increasing normalizing cooling rate; when the rate is slow, the grain size of high-temperature nitriding sample increases with the slow normalizing cooling rate, reducing the driving force for secondary recrystallization and increasing secondary recrystallization temperature. The acquired inhibitor is insufficient, which leads to unsuccessful secondary recrystallization. High-temperature nitriding and low-temperature nitriding lead to different sizes of inhibitors in the decarburized sheets; however, inhibitors in the surface and subsurface regions of high-temperature nitriding samples are primarily of the same size, while the inhibitors in the surface region of low-temperature nitriding samples are larger than those of the subsurface inhibitors. The lower-temperature nitriding sample with low nitrogen content exhibits a poor magnetic property. As the grain size remains small at a low normalizing temperature and high normalizing cooling rate, the second recrystallization starts at a slightly lower temperature and Brass-type oriented grains are present. The secondary recrystallization of high-temperature nitriding and low-temperature nitriding samples with high nitrogen content could be basically completed; however, the magnetic properties of samples are different, and more grains with deviated {210} < 001> orientation lead to a reduction in magnetic properties.

     

  • loading
  • [1]
    Ling C, Xiang L, Qiu S T, et al. Effects of normalizing annealing on grain-oriented silicon steel. J Iron Steel Res Int, 2014, 21(7): 690 doi: 10.1016/S1006-706X(14)60107-2
    [2]
    Li H, Feng Y L, Song M, et al. Effect of normalizing cooling process on microstructure and precipitates in low-temperature silicon steel. Trans Nonferrous Met Soc China, 2014, 24(3): 770 doi: 10.1016/S1003-6326(14)63124-1
    [3]
    王若平, 黎世德, 方澤民, 等. 低溫熱軋高磁感取向硅鋼板常化組織及析出相研究. 金屬熱處理, 2009, 34(6): 9 doi: 10.3969/j.issn.1673-4971.2009.06.003

    Wang R P, Li S D, Fang Z M, et al. Microstructure and precipitate of low temperature hot rolled HGO silicon steel plate by normalizing. Heat Treat Met, 2009, 34(6): 9 doi: 10.3969/j.issn.1673-4971.2009.06.003
    [4]
    Shimizu Y, Ito Y, Iida Y. Formation of the Goss orientation near the surface of 3 pct silicon steel during hot rolling. Metall Trans A, 1986, 17(8): 1323 doi: 10.1007/BF02650113
    [5]
    Liao C C, Hou C K. Effect of nitriding time on secondary recrystallization behaviors and magnetic properties of grain-oriented electrical steel. J Magn Magn Mater, 2010, 322(4): 434 doi: 10.1016/j.jmmm.2009.09.072
    [6]
    王瑞, 楊平, 劉恭濤. 滲氮溫度對獲得抑制劑取向硅鋼粒子析出及退火組織的影響. 中國體視學與圖像分析, 2016, 21(3): 272 https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201603004.htm

    Wang R, Yang P, Liu G T. Effect of nitriding temperature on inhibitor precipitation and the annealed microstructure of grain-oriented silicon steel produced by acquired inhibitor method. Chin J Stereology Image Anal, 2016, 21(3): 272 https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201603004.htm
    [7]
    Ushigami Y, Kurosawa F, Masui H, et al. Precipitation behaviors of injected nitride inhibitors during secondary recrystallization annealing in grain oriented silicon steel. Mater Sci Forum, 1996, 204-206: 593 doi: 10.4028/www.scientific.net/MSF.204-206.593
    [8]
    吳忠旺, 李軍, 趙宇, 等. 后天抑制劑獲得法制取向硅鋼析出物的轉化規律. 鋼鐵研究學報, 2011, 23(12): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201112012.htm

    Wu Z W, Li J, Zhao Y, et al. Rules of precipitate transformation for grain-oriented silicon steel producted by acquired inhibitor method. J Iron Steel Res, 2011, 23(12): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201112012.htm
    [9]
    吳忠旺, 趙宇, 李軍, 等. 低溫取向硅鋼高溫退火抑制劑的演化. 材料熱處理學報, 2011, 32(11): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201111020.htm

    Wu Z W, Li J, Zhao Y, et al. Evolution of inhibitor in the annealing process at high temperature of low temperature hot roll and nitriding grain-oriented silicon steel. Trans Mater Heat Treat, 2011, 32(11): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201111020.htm
    [10]
    宋惠軍, 楊平, 毛衛民. 電工鋼滲氮的氮行為. 金屬熱處理, 2012, 37(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201201009.htm

    Song H J, Yang P, Mao W M. Nitrogen behavior during nitriding treatment of electrical steel. Heat Treat Met, 2012, 37(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201201009.htm
    [11]
    Imamura T, Shingaki Y, Hayakawa Y. Effect of cold rolling reduction rate on secondary recrystallized texture in 3 pct Si-Fe steel. Metall Mater Trans A, 2013, 44(4): 1785 doi: 10.1007/s11661-012-1525-6
    [12]
    Homma H, Hutchinson B. Orientation dependence of secondary recrystallization in silicon-iron. Acta Mater, 2003, 51(13): 3795 doi: 10.1016/S1359-6454(03)00193-9
    [13]
    Kumano T, Haratani T, Fujii N. Effect of nitriding on grain oriented silicon steel bearing aluminum. ISIJ Int, 2005, 45(1): 95 doi: 10.2355/isijinternational.45.95
    [14]
    Kumano T, Ohata Y, Fujii N, et al. Effect of nitriding on grain oriented silicon steel bearing aluminum (the second study). J Magn Magn Mater, 2006, 304(2): e602 doi: 10.1016/j.jmmm.2006.02.188
    [15]
    Yoshitomi Y, Ushigami Y, Takahashi N, et al. Prediction method of sharpness of {110} < 001 > secondary recrystallization texture of Fe-3% Si alloy. Mater Sci Forum, 1996, 204-206: 629 doi: 10.4028/www.scientific.net/MSF.204-206.629
    [16]
    Kim J K, Woo J S, Chang S K. Influence of annealing before cold rolling on the evolution of sharp Goss texture in Fe-3%Si alloy. J Magn Magn Mater, 2000, 215-216: 162 doi: 10.1016/S0304-8853(00)00103-7
    [17]
    Harase J, Kurosawa F, Ushigami Y, et al. Change of magnetic induction of nitrided Fe-3%Si alloy during secondary recrystallization annealing. J Jpn Inst Met, 1995, 59(9): 917 doi: 10.2320/jinstmet1952.59.9_917
    [18]
    Ushigami Y, Nakayama T, Suga Y, et al. Influence of secondary recrystallization temperature on secondary recrystallization texture in Fe-3%Si alloy. Mater Sci Forum, 1996, 204-206: 605 doi: 10.4028/www.scientific.net/MSF.204-206.605
    [19]
    顏孟奇, 錢浩, 楊平, 等. 電工鋼中黃銅織構行為及其對Goss織構的影響. 金屬學報, 2012, 48(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201201004.htm

    Yan M Q, Qian H, Yang P, et al. Behaviors of brass texture and its influence on Goss texture in grain oriented electrical steels. Acta Metall Sin, 2012, 48(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201201004.htm
    [20]
    Yoshitomi Y, Ushigami Y, Harase J, et al. Coincidence grain boundary and role of primary recrystallized grain growth on secondary recrystallization texture evolution in Fe-3% Si alloy. Acta Metall Mater, 1994, 42(8): 2593 doi: 10.1016/0956-7151(94)90200-3
    [21]
    Gangli P, Szpunar J A. The use of Σ operators in investigating secondary recrystallization of 3% silicon steel. Mater Sci Forum, 1994, 157-162: 953 doi: 10.4028/www.scientific.net/MSF.157-162.953
    [22]
    Wang Y, Xu Y B, Zhang Y X, et al. On abnormal growth of {210}<001>grain in grain-oriented silicon steel. Mater Res Bull, 2015, 69: 138 doi: 10.1016/j.materresbull.2014.12.022
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (805) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频