<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 5
May  2019
Turn off MathJax
Article Contents
KANG Jin-xing, FENG Ya-li, LI Hao-ran, DU Zhu-wei, DENG Xiang-yi, WANG Hong-jun. Effect of Acidithiobacillus ferrooxidans on pyrolusite bioleaching[J]. Chinese Journal of Engineering, 2019, 41(5): 591-599. doi: 10.13374/j.issn2095-9389.2019.05.005
Citation: KANG Jin-xing, FENG Ya-li, LI Hao-ran, DU Zhu-wei, DENG Xiang-yi, WANG Hong-jun. Effect of Acidithiobacillus ferrooxidans on pyrolusite bioleaching[J]. Chinese Journal of Engineering, 2019, 41(5): 591-599. doi: 10.13374/j.issn2095-9389.2019.05.005

Effect of Acidithiobacillus ferrooxidans on pyrolusite bioleaching

doi: 10.13374/j.issn2095-9389.2019.05.005
More Information
  • Corresponding author: FENG Ya-li, E-mail: ylfeng126@126.com
  • Received Date: 2018-04-12
  • Publish Date: 2019-05-01
  • Biohydrometallurgy is an increasingly popular ore extraction technology and is especially applicable for low-grade ores. In particular, Acidithiobacillus ferrooxidans (A. ferrooxidans) is by far the most widely used bioleaching microorganism for leaching ores, including for sulfide ores and manganese dioxide ores. At present, many works are focused on the vital facilitating role of A. ferrooxidans in the cycles of sulfur and iron for sulfide ores bioleaching. However, research on the effect of A. ferrooxidans on manganese dioxide ores leaching is limited. The effects of A. ferrooxidans on the electrochemistry behavior of pyrolusite in simulated solutions (9K basic medium, A. ferrooxidans, Fe(Ⅲ), A. ferrooxidans+Fe(Ⅲ)) were investigated using cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization. Mott-Schottky curves were utilized to determine the passive film formed on the surface of pyrolusite ore in the presence or absence of bacteria bath solutions. The results show that A. ferrooxidans promotes the redox of MnO2/Mn2+ and triggers the reaction of MnO2/Mn(OH)2. A. ferrooxidans accelerates electron exchange between pyrolusite and solution; in the A. ferrooxidans-simulated solution, the charge-transfer reaction resistance of manganese dioxide is 34% lower than that of the control (9K) and 11% lower than that of the Fe(Ⅲ) solution. Germs cause polarization of pyrolusite, leading to an increase in oxidative activity of manganese dioxide. Bacteria facilitate the transformation of MnO2 to MnO·OH and is beneficial to its diffusion. The indirect action mechanism is adopted to explain the interaction between A. ferrooxidans and pyrolusite. The passive films formed in simulated solutions exhibit p-n-p-n type semiconductor properties at the polarization potential of 0.2 V when pH is 2.0, and the depletion layer of pyrolusite appears between 0.2 and 0.4 V. Introducing A.ferrooxidans to the Fe(Ⅲ)-free solution decreases the donor density and the acceptor density because bacteria contain a variety of groups involved in electron transfer, which accept free electrons or fill holes, prompting the exchange of species between manganese oxide and solution. Admixing A. ferrooxidans to Fe(Ⅲ)-containing solution increases carrier density, reducing the corrosion resistance of membrane. The corrosion rate of pyrolusite increases with the addition of A. ferrooxidans.

     

  • loading
  • [1]
    李超群, 田宗平, 曹健, 等. 錳礦石在非冶金工業領域中的應用. 中國錳業, 2016, 34(6): 91 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201606030.htm

    Li C Q, Tian Z P, Cao J, et al. An application of manganese ore in non-metallurgy. China's Manganese Ind, 2016, 34(6): 91 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201606030.htm
    [2]
    付勇, 徐志剛, 裴浩翔, 等. 中國錳礦成礦規律初探. 地質學報, 2014, 88(12): 2192 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412004.htm

    Fu Y, Xu Z G, Pei H X, et al. Study on metallogenic regularity of manganese ore deposits in China. Acta Geologica Sinica, 2014, 88(12): 2192 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412004.htm
    [3]
    和飛, 陳滬飛, 陳菓, 等. 低品位軟錳礦還原新技術和研究進展. 中國錳業, 2017, 35(6): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201706026.htm

    He F, Chen H F, Chen G, et al. A new technology of low grade pyrolusite ore in reduction process. China's Manganese Ind, 2017, 35(6): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201706026.htm
    [4]
    李照剛, 陳為亮, 張建軍, 等. 響應曲面法優化軟錳礦還原浸出的工藝. 化學工程, 2018, 46(2): 72 doi: 10.3969/j.issn.1005-9954.2018.02.015

    Li Z G, Chen W L, Zhang J J, et al. Reductive leaching technology of pyrolusite optimized by response surface methodology. Chem Eng China, 2018, 46(2): 72 doi: 10.3969/j.issn.1005-9954.2018.02.015
    [5]
    胡凱建. 復雜氧化銅礦堿性浸礦菌種的選育及浸出規律研究[學位論文]. 北京: 北京科技大學, 2017

    Hu K J. Study on Breeding of Alkalophilic Bacteria for Bioleaching of Complex Oxidized Copper Ore and Leaching Mechanism[Dissertation]. Beijing: University of Science and Technology Beijing, 2017
    [6]
    黃明清. 硫化銅礦生物堆浸氣體滲流規律及通風強化浸出機制[學位論文]. 北京: 北京科技大學, 2015

    Huang M Q. Rules of Air Flow and Enhanced Leaching Mechanism by Forced Aeration in Heap Bioleaching of Copper Sulfides [Dissertation]. Beijing: University of Science and Technology Beijing, 2015
    [7]
    齊鳳杰, 馮雅麗, 李浩然, 等. 低品位鎳磁黃鐵礦鎳浸出特性及回收方法. 北京科技大學學報, 2011, 33(9): 1065 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201109005.htm

    Qi F J, Feng Y L, Li H R, et al. Leaching characteristics and recovery method of nickel from low-grade nickel pyrrhotite. J Univ Sci Technol Beijing, 2011, 33(9): 1065 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201109005.htm
    [8]
    Peng Z J, Yu R L, Qiu G Z, et al. Really active form of fluorine toxicity affecting Acidithiobacillus ferrooxidans activity in bioleaching uranium. Trans Nonf errous Met Soc China, 2013, 23(3): 812 doi: 10.1016/S1003-6326(13)62533-9
    [9]
    Choi N C, Cho K H, Kim B J, et al. Enhancement of Au--Ag--Te contents in tellurium-bearing ore minerals via bioleaching. Int J Miner Metall Mater, 2018, 25(3): 262 doi: 10.1007/s12613-018-1569-8
    [10]
    Nú?ez-Ramírez D M, Solís-Soto A, López-Miranda J, et al. Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules Mine of Coahuila, Mexico. Int J Miner Metall Mater, 2011, 18(5): 523 doi: 10.1007/s12613-011-0472-3
    [11]
    程飛飛, 管俊芳, 張帆, 等. 錳礦化學選礦的研究現狀. 中國錳業, 2015, 33(4): 4 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201504037.htm

    Cheng F F, Guan J F, Zhang F, et al. A research status of manganese ore chemical processing. China's Manganese Ind, 2015, 33(4): 4 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201504037.htm
    [12]
    鐘慧芳, 蔡文六, 李雅芹. 細菌浸錳及其半工業性試驗. 微生物學報, 1990, 30(3): 228 https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB199003010.htm

    Zhong H F, Cai W L, Li Y Q. Bacterial leaching of manganese ores and semi-industrial scale practice. Acta Microbiol Sinica, 1990, 30(3): 228 https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB199003010.htm
    [13]
    郭盈, 張德強, 曹麗華, 等. 不同品質黃鐵礦-生物浸出液制劑浸出軟錳礦研究. 礦冶工程, 2016, 36(5): 76 doi: 10.3969/j.issn.0253-6099.2016.05.020

    Guo Y, Zhang D Q, Cao L H, et al. Pyrolusite leaching with different stage of leachate from bio-leaching of different grade pyrites. Min Metall Eng, 2016, 36(5): 76 doi: 10.3969/j.issn.0253-6099.2016.05.020
    [14]
    Liu X R, Jiang S C, Liu Y J, et al. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution. Int J Miner Metall Mater, 2013, 20(10): 925 doi: 10.1007/s12613-013-0816-2
    [15]
    傅開彬, 林海, 莫曉蘭, 等. 不同類型黃銅礦的生物浸出研究. 北京科技大學學報, 2011, 33(7): 806 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201107006.htm

    Fu K B, Lin H, Mo X L, et al. Study on bioleaching of different types of chalcopyrite. J Univ Sci Technol Beijing, 2011, 33(7): 806 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201107006.htm
    [16]
    Qu B, Deng L, Deng B, et al. Oxidation kinetics of dithionate compound in the leaching process of manganese dioxide with manganese dithionate. React Kinet Mech Catal, 2018, 123(2): 743 doi: 10.1007/s11144-017-1284-x
    [17]
    Nazari B, Jorjani E, Hani H, et al. Formation of jarosite and its effect on important ions for Acidithiobacillus ferrooxidans bacteria. Trans Nonferrous Met Soc China, 2014, 24(4): 1152 doi: 10.1016/S1003-6326(14)63174-5
    [18]
    Chabre Y, Pannetier J. Structural and electrochemical properties of the proton/γ-MnO2 system. Prog Solid State Chem, 1995, 23(1): 1 doi: 10.1016/0079-6786(94)00005-2
    [19]
    Senanayake G. Acid leaching of metals from deep-sea manganese nodules——a critical review of fundamentals and applications. Miner Eng, 2011, 24(13): 1379 doi: 10.1016/j.mineng.2011.06.003
    [20]
    Walanda D K, Lawrance G A, Donne S W. Hydrothermal MnO2: synthesis, structure, morphology and discharge performance. J Power Sour, 2005, 139(1-2): 325 doi: 10.1016/j.jpowsour.2004.06.062
    [21]
    李成濤, 程學群, 董超芳, 等. Cl-對690合金腐蝕電化學行為的影響. 北京科技大學學報, 2011, 33(4): 444 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201104009.htm

    Li C T, Cheng X Q, Dong C F, et al. Influence of Cl- on the corrosion electrochemical behavior of Alloy 690. J Univ Sci Technol Beijing, 2011, 33(4): 444 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201104009.htm
    [22]
    羅檢, 王毅, 蔣繼波, 等. 不同晶粒度螺紋鋼的電化學行為及其鈍化膜的Mott-Schottky研究. 化學學報, 2012, 70(10): 1213 https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB201210013.htm

    Luo J, Wang Y, Jiang J B, et al. Electrochemistry behavior of rebars with different grain size and Mott-Schottky research of passive films. Acta Chim Sinica, 2012, 70(10): 1213 https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB201210013.htm
    [23]
    張鑒清. 電化學測試技術. 北京: 化學工業出版社, 2010

    Zhang J Q. Electrochemical Measurement Technology. Beijing: Chemical Industry Press, 2010
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views (1013) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频