Citation: | CAO Guang-ming, LIU Yi-si, GAO Xin-yu, LI Guang-hui, WANG Hao, LIU Zhen-yu. Structural transformation of oxide scale of 700-MPa grade hot rolled high strength steel[J]. Chinese Journal of Engineering, 2019, 41(12): 1591-1598. doi: 10.13374/j.issn2095-9389.2019.04.24.001 |
[1] |
蔡寧, 鞠新華, 邢陽, 等. Ti微合金化700 MPa級汽車大梁鋼的研究. 軋鋼, 2013, 30(5):5 doi: 10.3969/j.issn.1003-9996.2013.05.002
Cai N, Ju X H, Xing Y, et al. Study on Timicro-alloyed 700 MPa high strength automobile-beam steel. Steel Roll, 2013, 30(5): 5 doi: 10.3969/j.issn.1003-9996.2013.05.002
|
[2] |
田文揚, 劉奮, 韋春華, 等. DP980高強鋼動態拉伸力學行為. 材料工程, 2017, 45(3):47 doi: 10.11868/j.issn.1001-4381.2015.000731
Tian W Y, Liu F, Wei C H, et al. Mechanical behavior of DP980 high strength steel under dynamic tensile tests. J Mater Eng, 2017, 45(3): 47 doi: 10.11868/j.issn.1001-4381.2015.000731
|
[3] |
邢淑清, 陸恒昌, 麻永林, 等. 800 MPa級高強鋼焊接粗晶區再熱循環的組織轉變規律. 材料工程, 2015, 43(7):93 doi: 10.11868/j.issn.1001-4381.2015.07.016
Xing S Q, Lu H C, Ma Y L, et al. Microstructure evolution of CG-HAZ reheated by second thermal cycle for 800 MPa grade high strength steel. J Mater Eng, 2015, 43(7): 93 doi: 10.11868/j.issn.1001-4381.2015.07.016
|
[4] |
張施琦, 馮定, 張躍, 等. 新型超高強度熱沖壓用鋼的熱變形行為及本構關系. 材料工程, 2016, 44(5):15 doi: 10.11868/j.issn.1001-4381.2016.05.003
Zhang S Q, Feng D, Zhang Y, et al. Hot deformation behavior and constitutive model of advanced ultra-high strength hot stamping steel. J Mater Eng, 2016, 44(5): 15 doi: 10.11868/j.issn.1001-4381.2016.05.003
|
[5] |
田亞強, 張宏軍, 陳連生, 等. 低碳硅錳鋼I&Q&P處理中C, Mn元素配分綜合作用. 材料工程, 2016, 44(4):32 doi: 10.11868/j.issn.1001-4381.2016.04.006
Tian Y Q, Zhang H J, Chen L S, et al. Comprehensive effect of C, Mn partitioning behavior on retained austenite of low carbon Si?Mn steel in I&Q&P process. J Mater Eng, 2016, 44(4): 32 doi: 10.11868/j.issn.1001-4381.2016.04.006
|
[6] |
余偉, 王俊, 劉濤. 熱軋鋼材氧化及表面質量控制技術的發展及應用. 軋鋼, 2017, 34(3):1
Yu W, Wang J, Liu T. Evolution and application of oxidation and surface quality control of hot rolled steel products. Steel Roll, 2017, 34(3): 1
|
[7] |
Gleeson B, Hadavi S M M, Young D J. Isothermal transformation behavior of thermally-grown wüstite. Mater High Temp, 2000, 17(2): 311 doi: 10.3184/096034000783640776
|
[8] |
Tanei H, Kondo Y. Effects of initial scale structure on transformation behavior of wüstite. ISIJ Int, 2012, 52(1): 105 doi: 10.2355/isijinternational.52.105
|
[9] |
Otsuka N, Doi T, Hidaka Y, et al. In-situ measurements of isothermal wüstite transformation of thermally grown FeO scale formed on 0.048 mass% Fe by synchrotron radiation in air. ISIJ Int, 2013, 53(2): 286 doi: 10.2355/isijinternational.53.286
|
[10] |
Chen R Y, Yeun W Y D. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen. OxidMet, 2003, 59(5-6): 433
|
[11] |
Paidassi J. Sur la precipitation d'oxyde Fe3O4dans les pelliculesd'oxydation du fer aux temperatures elevees. Acta Metall, 1955, 3(5): 447 doi: 10.1016/0001-6160(55)90133-4
|
[12] |
Hayashi S, Mizumoto K, Yoneda S, et al. The mechanism of phase transformation in thermally-grown FeO scale formed on pure-Fe in air. Oxid Met, 2014, 81(3-4): 357 doi: 10.1007/s11085-013-9442-7
|
[13] |
何永全, 劉紅艷, 孫彬, 等. 低碳鋼表面氧化鐵皮在連續冷卻過程中的組織轉變. 材料熱處理學報, 2015, 36(1):178
He Y Q, Liu H Y, Sun B, et al. Structure development of oxide scale on low carbon steel strip under continue cooling conditions. Trans Mater Heat Treat, 2015, 36(1): 178
|
[14] |
曹光明, 何永全, 劉小江, 等. 熱軋低碳鋼卷取后冷卻過程中三次氧化鐵皮結構轉變行為. 中南大學學報: 自然科學版, 2014, 45(6):1790
Cao G M, He Y Q, Liu X J, et al. Tertiary oxide scale structure transition of low carbon steel during continuous cooling after coiling process. J Cent South Univ Sci Technol, 2014, 45(6): 1790
|
[15] |
Yoneda S, Hayashi S, Kondo Y, et al. Effect of Mn on isothermal transformation of thermally grown FeO scale formed on Fe-Mn alloys. Oxid Met, 2017, 87(1-2): 125 doi: 10.1007/s11085-016-9661-9
|
[16] |
楊作宏, 陳伯春. 談微合金元素Nb、V、Ti在鋼中的作用. 甘肅冶金, 2000(4):20
Yang Z H, Chen B C. Discussion of the role in microalloying elements Nb, V and Ti in steel. Gansu Metall, 2000(4): 20
|