<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
ZHOU Hao, CHENG Yi, ZHOU Ming-xi, NI Yu-guo. Analysis of CO catalytic oxidation by Pt-loading catalyst and Ce-doped Fe2O3[J]. Chinese Journal of Engineering, 2020, 42(1): 70-77. doi: 10.13374/j.issn2095-9389.2019.04.08.005
Citation: ZHOU Hao, CHENG Yi, ZHOU Ming-xi, NI Yu-guo. Analysis of CO catalytic oxidation by Pt-loading catalyst and Ce-doped Fe2O3[J]. Chinese Journal of Engineering, 2020, 42(1): 70-77. doi: 10.13374/j.issn2095-9389.2019.04.08.005

Analysis of CO catalytic oxidation by Pt-loading catalyst and Ce-doped Fe2O3

doi: 10.13374/j.issn2095-9389.2019.04.08.005
More Information
  • Corresponding author: E-mail: zhouhao@zju.edu.cn
  • Received Date: 2019-04-08
  • Publish Date: 2020-01-01
  • The iron ore sintering flue gas contains a relatively high CO concentration (volume fraction of 0.5%?2%); therefore, it is of great significance to remove CO. To study the catalytic effect of different catalysts, typical Pt-supported catalyst and Ce-doped Fe2O3 catalyst were prepared by impregnation, and their components were analyzed by X-ray fluorescence. The activity results show that different initial CO concentrations, flue gas temperature, and water vapor volume fraction have a great influence on the removal efficiency of CO catalytic oxidation. When there is no water vapor in the flue gas, the CO removal efficiency of the two catalysts is over 60%. When the reaction temperature is 180 ℃ and the water vapor volume fraction is 11.7%, the CO conversion efficiency of the Pt-supported catalyst is 63.9%, but the CO conversion efficiency of the Ce-doped Fe2O3 catalyst is only about 34.9%. Furthermore, the results show that the Pt-supported catalyst has a better water resistance in the range of 180?300 ℃. If the reaction temperature is higher, the increase in water vapor volume will have a more negative impact on the catalytic efficiency of both catalysts. For example, when the volume fraction of water vapor increases from 0 to 27.1%, the catalytic efficiency of the Pt-supported catalyst drops from 73.9% to 62.3%, which decreases much more compared to the case of 180 ℃. In addition, the sulfur resistance of the two catalysts was also tested. The Ce-doped Fe2O3 catalyst is more resistant to SO2, when there is no water vapor. However, when SO2 and water vapor exist at the same time, the Pt-supported catalyst has better sulfur resistance. Therefore, during the actual sintering process, it is recommended to adopt efficient desulfurization measures and arrange the water absorption layer in order to reduce the negative impacts on catalysts.

     

  • loading
  • [1]
    吳勝利, 陳東峰, 趙成顯, 等. 不同料層高度燒結過程尾氣排放規律. 北京科技大學學報, 2010, 32(2):164

    Wu S L, Chen D F, Zhao C X, et al. Exhaust emission law at different bed depth sintering process. J Univ Sci Technol Beijing, 2010, 32(2): 164
    [2]
    馮祥, 張忠孝, 楊斌, 等. 風量對燒結煙氣成分影響的實驗研究. 中國冶金, 2015, 25(4):28

    Feng X, Zhang Z X, Yang B, et al. Experimental study of the ventilation volume’s influence on the composition of sintering flue gas. China Metall, 2015, 25(4): 28
    [3]
    Fan X H, Yu Z Y, Gan M, et al. Appropriate technology parameters of iron ore sintering process with flue gas recirculation. ISIJ Int, 2014, 54(11): 2541 doi: 10.2355/isijinternational.54.2541
    [4]
    梁飛雪, 朱華青, 秦張峰, 等. 一氧化碳低溫催化氧化. 化學進展, 2008, 20(10):1453

    Liang F X, Zhu H Q, Qin Z F, et al. Low-temperature catalytic oxidation of carbon monoxide. Prog Chem, 2008, 20(10): 1453
    [5]
    胡玲, 張海東, 王小菡, 等. CO催化氧化催化劑活性成分研究進展. 材料導報, 2016, 30(11):46

    Hu L, Zhang H D, Wang X H, et al. Active components of the catalysts for catalytic oxidation of CO. Mater Rev, 2016, 30(11): 46
    [6]
    Satsuma A, Osaki K, Yanagihara M, et al. Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts. Appl Catal B, 2013, 132-133: 511 doi: 10.1016/j.apcatb.2012.12.025
    [7]
    Choi J, Shin C B, Suh D J. Co-promoted Pt catalysts supported on silica aerogel for preferential oxidation of CO. Catal Commun, 2008, 9(5): 880 doi: 10.1016/j.catcom.2007.09.036
    [8]
    Li S Y, Liu G, Lian H L, et al. Low-temperature co oxidation over supported Pt catalysts prepared by colloid-deposition method. Catal Commun, 2008, 9(6): 1045 doi: 10.1016/j.catcom.2007.10.016
    [9]
    Pozdnyakova O, Teschner D, Wootsch A, et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: oxidation state and surface species on Pt/CeO2 under reaction conditions. J Catal, 2006, 237(1): 1 doi: 10.1016/j.jcat.2005.10.014
    [10]
    Zhu H G, Liang C D, Yan W F, et al. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. J Phys Chem B, 2006, 110(22): 10842 doi: 10.1021/jp060637q
    [11]
    Qian K, Huang W X, Jiang Z Q, et al. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive. J Catal, 2007, 248(1): 137 doi: 10.1016/j.jcat.2007.02.010
    [12]
    張曉東, 曲振平, 于芳麗, 等. 納米銀催化劑上CO氧化反應研究進展. 催化學報, 2013, 34(7):1277

    Zhang X D, Qu Z P, Yu F L, et al. Progress in carbon monoxide oxidation over nano-sized Ag catalysts. Chin J Catal, 2013, 34(7): 1277
    [13]
    Zhang X D, Qu Z P, Li X Y, et al. Low temperature CO oxidation over Ag/SBA-15 nanocomposites prepared via in-situ “pH-adjusting” method. Catal Commun, 2011, 16(1): 11 doi: 10.1016/j.catcom.2011.08.030
    [14]
    李力成, 王昌松, 馬璇璇, 等. 一種具有CO催化氧化穩定性的金銅雙金屬/介孔氧化鈦催化劑. 催化學報, 2012, 33(11):1778

    Li L C, Wang C S, Ma X X, et al. An Au?Cu bimetal catalyst supported on mesoporous TiO2 with stable catalytic performance in CO oxidation. Chin J Catal, 2012, 33(11): 1778
    [15]
    Luo M F, Fang P, He M, et al. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation. J Mol Catal A Chem, 2005, 239(1-2): 243 doi: 10.1016/j.molcata.2005.06.029
    [16]
    Kondrat S A, Davies T E, Zu Z L, et al. The effect of heat treatment on phase formation of copper manganese oxide: influence on catalytic activity for ambient temperature carbon monoxide oxidation. J Catal, 2011, 281(2): 279 doi: 10.1016/j.jcat.2011.05.012
    [17]
    Ramesh K, Chen L W, Chen F X, et al. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catal Today, 2008, 131(1-4): 477 doi: 10.1016/j.cattod.2007.10.061
    [18]
    Frey K, Iablokov V, Sáfrán G, et al. Nanostructured MnOx as highly active catalyst for CO oxidation. J Catal, 2012, 287: 30 doi: 10.1016/j.jcat.2011.11.014
    [19]
    Lou Y, Wang L, Zhao Z Y, et al. Low-temperature CO oxidation over Co3O4-based catalysts: significant promoting effect of Bi2O3, on Co3O4 catalyst. Appl Catal B, 2014, 146: 43 doi: 10.1016/j.apcatb.2013.06.007
    [20]
    Jiang D E, Dai S. The role of low-coordinate oxygen on Co3O4(110) in catalytic CO oxidation. Phys Chem Chem Phys, 2011, 13: 978 doi: 10.1039/C0CP01138J
    [21]
    Liu X J, Liu J F, Chang Z, et al. Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation. Catal Commun, 2011, 12(6): 530 doi: 10.1016/j.catcom.2010.11.016
    [22]
    Wagloehner S, Reichert D, Leon-Sorzano D, et al. Kinetic modeling of the oxidation of CO on Fe2O3 catalyst in excess of O2. J Catal, 2008, 260(2): 305 doi: 10.1016/j.jcat.2008.09.018
    [23]
    Jia A P, Jiang S Y, Lu J Q, et al. Study of catalytic activity at the CuO?CeO2 interface for CO oxidation. J Phys Chem C, 2010, 114(49): 21605 doi: 10.1021/jp108556u
    [24]
    Sedmak G, Ho?evar S, Levec J. Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2?y catalyst. J Catal, 2003, 213(2): 135 doi: 10.1016/S0021-9517(02)00019-2
    [25]
    張秋林, 徐利斯, 劉昕, 等. P123軟模板對CuO?CeO2結構及其CO催化氧化性能的影響. 無機化學學報, 2015, 31(8):1555

    Zhang Q L, Xu L S, Liu X, et al. Effect of P123 on structure and CO catalytic oxidation performance of CuO?CeO2 catalysts. Chin J Inorg Chem, 2015, 31(8): 1555
    [26]
    Tang C W, Kuo C C, Kuo M C, et al. Influence of pretreatment conditions on low-temperature carbon monoxide oxidation over CeO2/Co3O4 catalysts. Appl Catal A, 2006, 309(1): 37 doi: 10.1016/j.apcata.2006.04.020
    [27]
    陳然, 高曉亞, 王晶, 等. Ce改性Fe2O3催化劑對CO催化氧化的影響. 化工進展, 2017, 36(10):210

    Chen R, Gao X Y, Wang J, et al. Effect of Ce addition on Fe2O3 catalyst towards CO catalytic oxidation. Chem Ind Eng Prog, 2017, 36(10): 210
    [28]
    聶春. 富氫氣體中金屬整體式催化劑制備及CO選擇性氧化性能研究[學位論文]. 天津: 天津大學, 2008

    Nie C. Preparation and Study of Metallic Monolithic Catalysts for Preferential CO Oxidation in Excess Hydrogen [Dissertation]. Tianjin: Tianjin University, 2008
    [29]
    顧兵, 何申富, 姜創業. SDA脫硫工藝在燒結煙氣脫硫中的應用. 環境工程, 2013, 31(2):53

    Gu B, He S F, Jiang C Y. Application of spray drying absorption (SDA) In desulphurization of sintering flue gas. Environ Eng, 2013, 31(2): 53
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article views (1331) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频