Citation: | LU Tao-li, FAN Shu-ting, LU Lin, MA Zheng, CHEN Heng. Effect of corrosion performance of FeSiAl electromagnetic shielding coating on absorbing properties[J]. Chinese Journal of Engineering, 2019, 41(10): 1324-1331. doi: 10.13374/j.issn2095-9389.2019.04.01.003 |
[1] |
王連杰, 高煥方. 吸波涂料概述. 表面技術, 2004, 33(6): 13 doi: 10.3969/j.issn.1001-3660.2004.06.005
Wang L J, Gao H F. Summarization of antiradar coatings. Surf Technol, 2004, 33(6): 13 doi: 10.3969/j.issn.1001-3660.2004.06.005
|
[2] |
Wang D L, Sikora E, Shaw B. A study of the effects of filler particles on the degradation mechanisms of powder epoxy novolac coating systems under corrosion and erosion. Prog Org Coat, 2018, 121: 97 doi: 10.1016/j.porgcoat.2018.04.026
|
[3] |
Dhoke S K, Khanna A S, Sinha T J M. Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings. Prog Org Coat, 2009, 64(4): 371 doi: 10.1016/j.porgcoat.2008.07.023
|
[4] |
Tong Y, Bohm S, Song M. The capability of graphene on improving the electrical conductivity and anti-corrosion properties of Polyurethane coatings. Appl Surf Sci, 2017, 424: 72 doi: 10.1016/j.apsusc.2017.02.081
|
[5] |
Yang Z Q, Sun W, Wang L D, et al. Liquid-phase exfoliated fluorographene as a two dimensional coating filler for enhanced corrosion protection performance. Corros Sci, 2016, 103: 312 doi: 10.1016/j.corsci.2015.10.039
|
[6] |
Li S J, Sun W, Yang Z Q, et al. Influences of semiconductor oxide fillers on the corrosion behavior of metals under coatings. Electrochim Acta, 2018, 292: 425 doi: 10.1016/j.electacta.2018.08.116
|
[7] |
謝迪, 韋紅余, 何敏, 等. 用于吸波材料的鐵磁性/碳材料復合物. 材料導報, 2017, 31(增刊2): 125 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S2027.htm
Xie D, Wei H Y, He M, et al. Ferromagnetic carbon-based composites for wave absorbing materials. Mater Rev, 2017, 31(Suppl 2): 125 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S2027.htm
|
[8] |
班國東, 劉朝輝, 葉圣天, 等. 鎳鐵合金/鐵包云母粉復合吸波涂層材料的頻散特性. 裝備環境工程, 2017, 14(3): 95 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201703022.htm
Ban G D, Liu Z H, Ye S T, et al. Dispersion properties on nickalloy/iron package mica powder composite absorbing coatings. Equip Environ Eng, 2017, 14(3): 95 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201703022.htm
|
[9] |
趙靈智, 胡社軍, 何琴玉, 等. 電磁屏蔽材料的屏蔽原理與研究現狀. 包裝工程, 2006, 27(2): 1 doi: 10.3969/j.issn.1001-3563.2006.02.001
Zhao L Z, Hu S J, He Q Y, et al. Shielding principle and research progress of electromagnetic shielding materials. Packag Eng, 2006, 27(2): 1 doi: 10.3969/j.issn.1001-3563.2006.02.001
|
[10] |
靳武剛. 碳纖維在電磁屏蔽材料中的應用研究. 高科技纖維與應用, 2003, 28(4): 9 doi: 10.3969/j.issn.1007-9815.2003.04.003
Jin W G. Development and applications of carbon fiber in EMS composites. Hi-Tech Fiber Appl, 2003, 28(4): 9 doi: 10.3969/j.issn.1007-9815.2003.04.003
|
[11] |
金丹, 祁遠東, 郭宇鵬, 等. 碳纖維/鐵硅鋁復合材料的低頻吸波性能. 材料導報, 2016, 30(10): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201620006.htm
Jin D, Qi Y D, Guo Y P, et al. Absorbing properties of carbon fiber/FeSiAl composite in low frequency band. Mater Rev, 2016, 30(10): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201620006.htm
|
[12] |
王濤, 位建強, 張釗琦, 等. 片形FeSiAl磁粉復合材料的雷達波吸收機理. 中國材料進展, 2013, 32(2): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201302005.htm
Wang T, Wei J Q, Zhang Z Q, et al. Radar wave absorption mechanism of the flake-shaped FeSiAl particle composite. Mater China, 2013, 32(2): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201302005.htm
|
[13] |
張永清, 丁耀根, 陰生毅, 等. FeSiAl微波衰減涂層電磁特性分析. 真空電子技術, 2006(6): 39 doi: 10.3969/j.issn.1002-8935.2006.06.012
Zhang Y Q, Ding Y G, Yin S Y, et al. Electrical and magnetic characteristic study of FeSiAl microwave attenuating coatings. Vac Electron, 2006(6): 39 doi: 10.3969/j.issn.1002-8935.2006.06.012
|
[14] |
Sun J, Xu H L, Shen Y, et al. Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites. J Alloys Compd, 2013, 548: 18 doi: 10.1016/j.jallcom.2012.08.114
|
[15] |
趙凱華, 陳熙謀. 電磁學. 4版. 北京: 高等教育出版社, 2018
Zhao K H, Chen X M. Electromagnetism. 4th Ed. Beijing: Higher Education Press, 2018
|
[16] |
王強, 王春江, 龐雪君, 等. 利用強磁場控制過共晶鋁硅合金的凝固組織. 材料研究學報, 2004, 18(6): 568 doi: 10.3321/j.issn:1005-3093.2004.06.002
Wang Q, Wang C J, Pang X J, et al. Control of solidified structures of Al-Si hypereutectic alloy by using intense magnetic fields. Chin J Mater Res, 2004, 18(6): 568 doi: 10.3321/j.issn:1005-3093.2004.06.002
|
[17] |
Goc K, Gaska K, Klimczyk K, et al. Influence of magnetic field-aided filler orientation on structure and transport properties of ferrite filled composites. J Magn Magn Mater, 2016, 419: 345 doi: 10.1016/j.jmmm.2016.06.046
|
[18] |
Lee J Y, Kumar V, Lee D J. Compressive properties of magnetorheological elastomer with different magnetic fields and types of filler. Polym Adv Technol, 2019, 30(4): 1106 doi: 10.1002/pat.4544
|
[19] |
Zhu Y S, Umehara N, Ido Y, et al. Computer simulation of structures and distributions of particles in MAGIC fluid. J Magn Magn Mater, 2006, 302(1): 96 doi: 10.1016/j.jmmm.2005.08.015
|
[20] |
孫欣, 章禮斌, 孫浩楷, 等. 磁場中磁性顆粒運動機理的研究進展及應用領域. 礦山工程, 2017, 5(4): 114
Sun X, Zhang L B, Sun H K, et al. Research progress and application field of magnetic particle motion mechanism in magnetic field. Mine Eng, 2017, 5(4): 114
|
[21] |
Adams J D, Kim U, Soh H T. Multitarget magnetic activated cell sorter. Proc Natl Acad Sci USA, 2008, 105(47): 18165 doi: 10.1073/pnas.0809795105
|
[22] |
Tokura S, Hara M, Kawaguchi N, et al. The behavior of nano-and micro-magnetic particles under a high magnetic field using a superconducting magnet. IEEE Trans Appl Supercond, 2014, 24(3): 3700305 http://ieeexplore.ieee.org/document/6650034/
|
[23] |
Rodríguez-Arco L, López-López M T, Durán J D G, et al. Stability and magnetorheological behaviour of magnetic fluids based on ionic liquids. J Phys Condens Matter, 2011, 23(45): 455101 doi: 10.1088/0953-8984/23/45/455101
|
[24] |
Nagato K, Oshima T, Kuwayama A, et al. Microscopic observation of behavior of magnetic particle clusters during torque transfer between magnetic poles. J Appl Phys, 2015, 117(17): 17C729 doi: 10.1063/1.4916113
|
[25] |
Ando T, Hirota N, Wada H. Numerical simulation of chainlike cluster movement of feeble magnetic particles by induced magnetic dipole moment under high magnetic fields. Sci Technol Adv Mater, 2009, 10(1): 014609 doi: 10.1088/1468-6996/10/1/014609
|
[26] |
褚海榮, 陳平, 于祺, 等. FeCo/石墨烯的制備和吸波性能. 材料研究學報, 2018, 32(3): 161 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201803001.htm
Chu H R, Chen P, Yu Q, et al. Preparation and microwave absorption properties of FeCo/graphene. Chin J Mater Res, 2018, 32(3): 161 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201803001.htm
|
[27] |
王濤, 張峻銘, 王鵬, 等. 吸波材料吸波機制及吸波劑性能優劣評價方法. 磁性材料及器件, 2016, 47(6): 7 doi: 10.3969/j.issn.1001-3830.2016.06.002
Wang T, Zhang J M, Wang P, et al. The absorption mechanism of radar absorber and performance evaluation criterion of absorbent. J Magn Mater Devices, 2016, 47(6): 7 doi: 10.3969/j.issn.1001-3830.2016.06.002
|
[28] |
劉祥萱, 陳鑫, 王煊軍, 等. 磁性吸波材料的研究進展. 表面技術, 2013, 42(4): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201304027.htm
Liu X W, Chen X, Wang X J, et al. Recent progress in magnetic absorbing materials. Surf Technol, 2013, 42(4): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201304027.htm
|