Citation: | GUAN Liang-liang, LU Jian-hao, LIAN Fang. Mesoporous composite of core-shell FeS2 micron spheres with multi-walled CNTs and its application in lithium ion batteries[J]. Chinese Journal of Engineering, 2019, 41(4): 489-496. doi: 10.13374/j.issn2095-9389.2019.04.009 |
[1] |
Zhang SS, Tran D T. Mechanism and solution for the capacity fading of Li/FeS2 battery. J Electrochem Soc, 2016, 163(5): A792 doi: 10.1149/2.0041606jes
|
[2] |
Tan R, Yang J L, Hu J T, et al. Core-shell nano-FeS2@ Ndoped graphene as an advanced cathode material for rechargeable Li-ion batteries. Chem Commun, 2016, 52(5): 986 doi: 10.1039/C5CC08002A
|
[3] |
Fong R, Dahn J R, Jones C H W. Electrochemistry of pyritebased cathodes for ambient temperature lithium batteries. J Electrochem Soc, 1989, 136(11): 3206 doi: 10.1149/1.2096426
|
[4] |
Hu Z, Zhang K, Zhu Z Q, et al. FeS2 microspheres with an etherbased electrolyte for high-performance rechargeable lithium batteries. J Mater Chem A, 2015, 3(24): 12898 doi: 10.1039/C5TA02169C
|
[5] |
Hu Z, Zhu Z Q, ChengF Y, et al. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ Sci, 2015, 8: 1309 doi: 10.1039/C4EE03759F
|
[6] |
Tomczuk Z, Tani B, Otto N C, et al. Phase relationships in positive electrodes of high temperature Li-Al/LiCl-KCl/ FeS2 cells. J Electrochem Soc, 1982, 129(5): 925 doi: 10.1149/1.2124067
|
[7] |
Cabana J, Monconduit L, Larcher D, et al. Beyond intercalationbased Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22(35): E170 doi: 10.1002/adma.201000717
|
[8] |
ZhangFF, Huang G, Wang X X, et al. Sulfur-impregnated coreshell hierarchical porous carbon for lithium-sulfur batteries. ChemEur J, 2014, 20(52): 17523 http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM25346404.aspx
|
[9] |
Liang X, Liu Y, Wen Z Y, et al. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries. J Power Sources, 2011, 196(16): 6951 doi: 10.1016/j.jpowsour.2010.11.132
|
[10] |
Wang L N, Wang Y G, Xia Y Y. A high performance lithiumion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ Sci, 2015, 8(5): 1551 doi: 10.1039/C5EE00058K
|
[11] |
Zhang D, Mai Y J, Xiang J Y, et al. FeS2/C composite as an anode for lithium ion batteries with enhanced reversible capacity. J Power Sources, 2012, 217: 229 doi: 10.1016/j.jpowsour.2012.05.112
|
[12] |
Chen T, Zhang Z W, Cheng B R, et al. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J Am Chem Soc, 2017, 139(36): 12710 doi: 10.1021/jacs.7b06973
|
[13] |
Ahn I S, Kim D W, Kang D K, et al. The effects of the particle size and active materials on the discharge properties of the Li/Fe(X)S2 electrode. Met Mater Int, 2008, 14(1): 65 doi: 10.3365/met.mat.2008.02.065
|
[14] |
Xu L, Hu Y J, Zhang H X, et al. Confined synthesis of FeS2 nanoparticles encapsulated in carbon nanotube hybrids for ultrastable lithium-ion batteries. ACS Sustainable Chem Eng, 2016, 4 (8): 4251 doi: 10.1021/acssuschemeng.6b00741
|
[15] |
Li L, Cabán-Acevedo M, Girard SN, et al. High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries. Nanoscale, 2014, 6(4): 2112 doi: 10.1039/C3NR05851D
|
[16] |
Mai L Q, Tian X C, Xu X, et al. Nanowire electrodes for elec-trochemical energy storage devices. Chem Rev, 2014, 114(23): 11828 doi: 10.1021/cr500177a
|
[17] |
Zhang CF, Wang Z Y, Guo Z P, et al. Synthesis of MoS2-C one-dimensional nanostructures with improved lithium storage properties. ACS Appl Mater Interfaces, 2012, 4(7): 3765 doi: 10.1021/am301055z
|
[18] |
Xu X, Cai T W, Meng Z, et al. FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery. J Power Sources, 2016, 331: 366 doi: 10.1016/j.jpowsour.2016.09.015
|
[19] |
JinF Y, Wang Y. Topotactical conversion of carbon coatedFebased electrodes on graphene aerogels for lithium ion storage. J Mater Chem A, 2015, 3(28): 14741 doi: 10.1039/C5TA03605D
|
[20] |
Liu L, Yuan Z Z, Qiu C X, et al. A novel FeS2/CNT microspherical cathode material with enhanced electrochemical characteristics for lithium-ion batteries. Solid State Ionics, 2013, 241: 25 doi: 10.1016/j.ssi.2013.03.031
|
[21] |
Zhu Y J, Fan X L, Suo L M, et al. Electrospun FeS2@ carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano, 2015, 10(1): 1529 doi: 10.1021/acsnano.5b07081
|
[22] |
Lu J H, LianF, Guan L L, et al. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages. J Mater Chem A, 2019, 7(3): 991 doi: 10.1039/C8TA09955C
|
[23] |
Kahlweit M. Ostwald ripening of precipitates. Adv Colloid Interface Sci, 1975, 5(1): 1 doi: 10.1016/0001-8686(75)85001-9
|
[24] |
Xu X, Meng Z, Zhu X L, et al. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery. J Power Sources, 2018, 380: 12 doi: 10.1016/j.jpowsour.2018.01.057
|
[25] |
Xu X J, Liu J, Liu Z B, et al. Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano, 2017, 11(9): 9033 doi: 10.1021/acsnano.7b03530
|
[26] |
ZhangFF, Wang C L, Huang G, et al. FeS2@ C nanowires derived from organic-inorganic hybrid nanowires for high-rate and long-life lithium-ion batteries. J Power Sources, 2016, 328: 56 doi: 10.1016/j.jpowsour.2016.07.117
|
[27] |
Pan G X, CaoF, Xia X H, et al. Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries. J Power Sources, 2016, 332: 383 doi: 10.1016/j.jpowsour.2016.09.126
|
[28] |
Xu X, Cai T W, Meng Z, et al. FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery. J Power Sources, 2016, 331: 366 doi: 10.1016/j.jpowsour.2016.09.015
|
[29] |
Zhang X C, Shyy W, Sastry A M. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc, 2007, 154(10): A910 doi: 10.1149/1.2759840
|