<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
GUAN Liang-liang, LU Jian-hao, LIAN Fang. Mesoporous composite of core-shell FeS2 micron spheres with multi-walled CNTs and its application in lithium ion batteries[J]. Chinese Journal of Engineering, 2019, 41(4): 489-496. doi: 10.13374/j.issn2095-9389.2019.04.009
Citation: GUAN Liang-liang, LU Jian-hao, LIAN Fang. Mesoporous composite of core-shell FeS2 micron spheres with multi-walled CNTs and its application in lithium ion batteries[J]. Chinese Journal of Engineering, 2019, 41(4): 489-496. doi: 10.13374/j.issn2095-9389.2019.04.009

Mesoporous composite of core-shell FeS2 micron spheres with multi-walled CNTs and its application in lithium ion batteries

doi: 10.13374/j.issn2095-9389.2019.04.009
More Information
  • Pyrite (FeS2) is considered to be an excellent electrode material candidate for energy storage devices because of its abundant resources, cost effectiveness, environmental friendliness and high theoretical capacity of 894 mA·h·g-1 based on conversiontype reactions.However, transition metal sulfides (TMSs), includingFeS2, suffer from low electronic conductivity, sluggish Li ion transfer kinetics, and severe volume change while charging and discharging, which contribute to the sharp decline in capacity as well as limit its application as electrode material for secondary batteries.Downsizing TMS powders to the nanoscale becomes a common strategy to mitigate the volume change and maximize the proportion of active material involved in the electrochemical process.However, nanostructures lead to a serious interphase detrimental reaction, dissolution of the polysulfide intermediates, and low volumetric energy density.Therefore, micron particles are critical to the design of high energy density active material in view of industrial applications.In this study, a facile hydrothermal method has been successfully developed to synthesize a novel mesoporous composite of core-shell FeS2 micron spheres with multi-walled carbon nanotubes (C-S-FeS2@ MWCNT).The protective layer is constructed on FeS2 micron spheres consisting of the approximately 350 nm-thickness shell stacked by nanosheet FeS2 particles and the reticular MWCNTs anchored via chemical binding.The FeS2 content is determined using thermogravimetric analysis to be 73.4% of the C-S-FeS2@ MWCNT composite, which is higher than the value of the reported compound material with nanopowder.The unique architecture with abundant functional groups and pore structures not only provides the Li+ ion diffusion pathway but also buffers volume expansion during cycling.The galvanostatic circulation tests indicate that the C-S-FeS2@ MWCNT electrode delivers a high reversible capacity of 638 mA·h·g-1 in 250 cycles at a current density of 200 mA·g-1 and exhibits a significantly improved rate performance.This work demonstrates a new method to develop TMSmicron electrode material with high volumetric energy density.

     

  • loading
  • [1]
    Zhang SS, Tran D T. Mechanism and solution for the capacity fading of Li/FeS2 battery. J Electrochem Soc, 2016, 163(5): A792 doi: 10.1149/2.0041606jes
    [2]
    Tan R, Yang J L, Hu J T, et al. Core-shell nano-FeS2@ Ndoped graphene as an advanced cathode material for rechargeable Li-ion batteries. Chem Commun, 2016, 52(5): 986 doi: 10.1039/C5CC08002A
    [3]
    Fong R, Dahn J R, Jones C H W. Electrochemistry of pyritebased cathodes for ambient temperature lithium batteries. J Electrochem Soc, 1989, 136(11): 3206 doi: 10.1149/1.2096426
    [4]
    Hu Z, Zhang K, Zhu Z Q, et al. FeS2 microspheres with an etherbased electrolyte for high-performance rechargeable lithium batteries. J Mater Chem A, 2015, 3(24): 12898 doi: 10.1039/C5TA02169C
    [5]
    Hu Z, Zhu Z Q, ChengF Y, et al. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ Sci, 2015, 8: 1309 doi: 10.1039/C4EE03759F
    [6]
    Tomczuk Z, Tani B, Otto N C, et al. Phase relationships in positive electrodes of high temperature Li-Al/LiCl-KCl/ FeS2 cells. J Electrochem Soc, 1982, 129(5): 925 doi: 10.1149/1.2124067
    [7]
    Cabana J, Monconduit L, Larcher D, et al. Beyond intercalationbased Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22(35): E170 doi: 10.1002/adma.201000717
    [8]
    ZhangFF, Huang G, Wang X X, et al. Sulfur-impregnated coreshell hierarchical porous carbon for lithium-sulfur batteries. ChemEur J, 2014, 20(52): 17523 http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM25346404.aspx
    [9]
    Liang X, Liu Y, Wen Z Y, et al. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries. J Power Sources, 2011, 196(16): 6951 doi: 10.1016/j.jpowsour.2010.11.132
    [10]
    Wang L N, Wang Y G, Xia Y Y. A high performance lithiumion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ Sci, 2015, 8(5): 1551 doi: 10.1039/C5EE00058K
    [11]
    Zhang D, Mai Y J, Xiang J Y, et al. FeS2/C composite as an anode for lithium ion batteries with enhanced reversible capacity. J Power Sources, 2012, 217: 229 doi: 10.1016/j.jpowsour.2012.05.112
    [12]
    Chen T, Zhang Z W, Cheng B R, et al. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J Am Chem Soc, 2017, 139(36): 12710 doi: 10.1021/jacs.7b06973
    [13]
    Ahn I S, Kim D W, Kang D K, et al. The effects of the particle size and active materials on the discharge properties of the Li/Fe(X)S2 electrode. Met Mater Int, 2008, 14(1): 65 doi: 10.3365/met.mat.2008.02.065
    [14]
    Xu L, Hu Y J, Zhang H X, et al. Confined synthesis of FeS2 nanoparticles encapsulated in carbon nanotube hybrids for ultrastable lithium-ion batteries. ACS Sustainable Chem Eng, 2016, 4 (8): 4251 doi: 10.1021/acssuschemeng.6b00741
    [15]
    Li L, Cabán-Acevedo M, Girard SN, et al. High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries. Nanoscale, 2014, 6(4): 2112 doi: 10.1039/C3NR05851D
    [16]
    Mai L Q, Tian X C, Xu X, et al. Nanowire electrodes for elec-trochemical energy storage devices. Chem Rev, 2014, 114(23): 11828 doi: 10.1021/cr500177a
    [17]
    Zhang CF, Wang Z Y, Guo Z P, et al. Synthesis of MoS2-C one-dimensional nanostructures with improved lithium storage properties. ACS Appl Mater Interfaces, 2012, 4(7): 3765 doi: 10.1021/am301055z
    [18]
    Xu X, Cai T W, Meng Z, et al. FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery. J Power Sources, 2016, 331: 366 doi: 10.1016/j.jpowsour.2016.09.015
    [19]
    JinF Y, Wang Y. Topotactical conversion of carbon coatedFebased electrodes on graphene aerogels for lithium ion storage. J Mater Chem A, 2015, 3(28): 14741 doi: 10.1039/C5TA03605D
    [20]
    Liu L, Yuan Z Z, Qiu C X, et al. A novel FeS2/CNT microspherical cathode material with enhanced electrochemical characteristics for lithium-ion batteries. Solid State Ionics, 2013, 241: 25 doi: 10.1016/j.ssi.2013.03.031
    [21]
    Zhu Y J, Fan X L, Suo L M, et al. Electrospun FeS2@ carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano, 2015, 10(1): 1529 doi: 10.1021/acsnano.5b07081
    [22]
    Lu J H, LianF, Guan L L, et al. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages. J Mater Chem A, 2019, 7(3): 991 doi: 10.1039/C8TA09955C
    [23]
    Kahlweit M. Ostwald ripening of precipitates. Adv Colloid Interface Sci, 1975, 5(1): 1 doi: 10.1016/0001-8686(75)85001-9
    [24]
    Xu X, Meng Z, Zhu X L, et al. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery. J Power Sources, 2018, 380: 12 doi: 10.1016/j.jpowsour.2018.01.057
    [25]
    Xu X J, Liu J, Liu Z B, et al. Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano, 2017, 11(9): 9033 doi: 10.1021/acsnano.7b03530
    [26]
    ZhangFF, Wang C L, Huang G, et al. FeS2@ C nanowires derived from organic-inorganic hybrid nanowires for high-rate and long-life lithium-ion batteries. J Power Sources, 2016, 328: 56 doi: 10.1016/j.jpowsour.2016.07.117
    [27]
    Pan G X, CaoF, Xia X H, et al. Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries. J Power Sources, 2016, 332: 383 doi: 10.1016/j.jpowsour.2016.09.126
    [28]
    Xu X, Cai T W, Meng Z, et al. FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery. J Power Sources, 2016, 331: 366 doi: 10.1016/j.jpowsour.2016.09.015
    [29]
    Zhang X C, Shyy W, Sastry A M. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc, 2007, 154(10): A910 doi: 10.1149/1.2759840
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)

    Article views (994) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频