<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
DONG Zhuo, TANG Shi-bin, LANG Ying-xian. Hydraulic fracture prediction theory based on the minimumstrain energy density criterion[J]. Chinese Journal of Engineering, 2019, 41(4): 436-446. doi: 10.13374/j.issn2095-9389.2019.04.003
Citation: DONG Zhuo, TANG Shi-bin, LANG Ying-xian. Hydraulic fracture prediction theory based on the minimumstrain energy density criterion[J]. Chinese Journal of Engineering, 2019, 41(4): 436-446. doi: 10.13374/j.issn2095-9389.2019.04.003

Hydraulic fracture prediction theory based on the minimumstrain energy density criterion

doi: 10.13374/j.issn2095-9389.2019.04.003
More Information
  • Corresponding author: TANG Shi-bin, E-mail: tang_shibin@dlut.edu.cn
  • Received Date: 2018-03-08
  • Publish Date: 2019-04-15
  • Hydraulic fracturing is a promising technique used in oil and gas reservoirs, enhanced geothermal systems, and coal gas production.Although its use is widespread, many aspects of hydraulic fracturing are still not well understood and need to be further investigated to achieve increases in oil and gas production while mitigating the adverse aspects of hydraulic fracturing.Understanding how hydraulic pressure extends preexisting fractures and forms a complex fracture network is essential for the design and treatment of hydraulic fracturing.Critical water pressure and fracture initiation angle are two important parameters involved in the hydraulic fracture propagation process and production from a well.In the present study, a minimum strain energy density criterion, which considers the effects of T-stress and Poisson's ratio, was proposed to analyze fracture initiation during hydraulic fracturing.The fracture initiation angle for different crack types was investigated using the proposed theoretical method, and the results indicate that the fracture initiation angle is not only related to the stress intensity factor but also affected by the T-stress and Poisson's ratio.The critical water pressure and critical initiation angle for two symmetric radial cracks emanating from a pressurized borehole were investigated, and the theoretical results were consistent with the experimental results.Through the proposed theoretical method, the influence of T-stress, radius of the fracture process zone, Biot's coefficient, lateral pressure coefficient and Poisson's ratio on the hydraulic fracturing behavior was analyzed.Parameter analysis indicates that the radius of the fracture process zone, T-stress, and lateral pressure coefficient play an important role in the critical initiation angle and critical water pressure.The critical water pressure increases with the decrement of Poisson's ratio, whereas the critical initiation angle shows the opposite trend.Biot's coefficient has no effect on the critical initiation angle but has a significant influence on the fracture initiation angle under high water pressure.The theoretical model enables a comprehensive understanding of the characteristics of hydraulic fracturing under complex loading conditions.The results also provided a basis for quantitative investigations of the engineering design of hydraulic fracturing treatments.

     

  • loading
  • [1]
    陳勉, 金衍, 張廣清. 石油工程巖石力學. 北京: 科學出版社, 2008

    Chen M, Jin Y, Zhang G Q. Petroleum Engineering Rock Mechanics. Beijing: Science Press, 2008
    [2]
    劉建中, 劉翔鶚, 張雪, 等. 大尺度水壓致裂模擬實驗. 地球物理學報, 1994, 37(增刊1): 161 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX4S2.016.htm

    Liu J Z, Liu X G, Zhang X, et al. The great scale rock experiment simulating hydraulic fracturing. Acta Geophys Sin, 1994, 37 (Suppl 1): 161 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX4S2.016.htm
    [3]
    姜滸, 陳勉, 張廣清, 等. 定向射孔對水力裂縫起裂與延伸的影響. 巖石力學與工程學報, 2009, 28(7): 1321 doi: 10.3321/j.issn:1000-6915.2009.07.004

    Jiang H, Chen M, Zhang G Q, et al. Impart of oriented perforation on hydraulic fracture initiation and propagation. Chin J Rock Mech Eng, 2009, 28(7): 1321 doi: 10.3321/j.issn:1000-6915.2009.07.004
    [4]
    Wang D, Chen M, Jon Y, et al.Experimental study of fracture initiation and propagation from a wellbore//49th US Rock Mechanics/Geomechanics Symposium.San Francisco, 2015: ARMA- 2015-068
    [5]
    李旺, 李連崇, 唐春安. 水平井平行裂縫間誘導應力干擾機制的數值模擬研究. 天然氣地球科學, 2016, 27(11): 2043 doi: 10.11764/j.issn.1672-1926.2016.11.2043

    Li W, Li L C, Tang C A. Numerical simulation research on mechanism of induced stress perturbation between parallel fractures in horizontal wells. Nat Gas Geosci, 2016, 27(11): 2043 doi: 10.11764/j.issn.1672-1926.2016.11.2043
    [6]
    Liu C, Shi F, Lu D T, et al. Numerical simulation of simultaneous multiple fractures initiation in unconventional reservoirs through injection control of horizontal well. J Petrol Sci Eng, 2017, 159: 603 doi: 10.1016/j.petrol.2017.09.064
    [7]
    Shi F, Wang X L, Liu C, et al. An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures. Eng Fract Mech, 2017, 173: 64 doi: 10.1016/j.engfracmech.2017.01.025
    [8]
    Nadimi S, Miscovic I, McLennan J. A 3D peridynamic simulation of hydraulic fracture process in a heterogeneous medium. J Petrol Sci Eng, 2016, 145: 444 doi: 10.1016/j.petrol.2016.05.032
    [9]
    連志龍, 張勁, 王秀喜, 等. 水力壓裂擴展特性的數值模擬研究. 巖土力學, 2009, 30(1): 169 doi: 10.3969/j.issn.1000-7598.2009.01.029

    Lian Z L, Zhang J, Wang X X, et al. Simulation study of characteristics of hydraulic fracturing propagation. Rock Soil Mech, 2009, 30(1): 169 doi: 10.3969/j.issn.1000-7598.2009.01.029
    [10]
    Wang X L, Shi F, Liu H, et al. Numerical simulation of hydraulic fracturing in orthotropic formation based on the extended finite element method. J Nat Gas Sci Eng, 2016, 33: 56 doi: 10.1016/j.jngse.2016.05.001
    [11]
    Hosseini S M.On the linear elastic fracture mechanics application in Barnett shale hydraulic fracturing//47th US Rock Me chanics /Geomechanics Symposium.San Francisco, 2013: AR- MA-2013-644
    [12]
    蒲成志, 曹平, 張春陽, 等. 雙向壓縮條件下閉合裂隙巖體斷裂破壞機制及滲透壓環境判定準則. 巖土力學, 2015, 36 (1): 56 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501007.htm

    Pu C Z, Cao P, Zhang C Y, et al. Fracture failure mechanism of rock with closed crack and judging criterion of seepage pressure under biaxial compression. Rock Soil Mech, 2015, 36(1): 56 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501007.htm
    [13]
    李夕兵, 賀顯群, 陳紅江. 滲透水壓作用下類巖石材料張開型裂紋啟裂特性研究. 巖石力學與工程學報, 2012, 31 (7): 1317 doi: 10.3969/j.issn.1000-6915.2012.07.002

    Li X B, He X Q, Chen H J. Crack initiation characteristics of opening-mode crack embedded in rock-like material under seepage pressure. Chin J Rock Mech Eng, 2012, 31(7): 1317 doi: 10.3969/j.issn.1000-6915.2012.07.002
    [14]
    Tang S B, Dong Z, Huang R Q. Determination of T-stress using finite element analysis. Sci China Technol Sci, 2017, 60 (8) : 1211 doi: 10.1007/s11431-016-0835-2
    [15]
    李世愚, 和泰名, 尹祥礎. 巖石斷裂力學導論. 合肥: 中國科學技術大學出版社, 2010

    Li S Y, He T M, Yin X C. Introduction of Rock Fracture Mechanics. Hefei: University of Science and Technology of China Press, 2010
    [16]
    Jin X C.An Integrated Geomechanics and Petrophysics Study of Hydraulic Fracturing in Naturally Fractured Reservoirs [Dissertation].Norman: University of Oklahoma, 2014
    [17]
    Tang S B. The effect of T-stress on the fracture of brittle rock under compression. Int J Rock Mech Min Sci, 2015, 79: 86 doi: 10.1016/j.ijrmms.2015.06.009
    [18]
    Seweryn A. A non-local stress and strain energy release rate mixed mode fracture initiation and propagation criteria. Eng Fract Mech, 1998, 59(6): 737 doi: 10.1016/S0013-7944(97)00175-6
    [19]
    Wei Y J. An extended strain energy density failure criterion by differentiating volumetric and distortional deformation. Int J Solids Struct, 2012, 49(9): 1117 doi: 10.1016/j.ijsolstr.2012.01.015
    [20]
    Ayatollahi M R, Moghaddam M R, Razavi S M J, et al. Geometry effects on fracture trajectory of PMMA samples under pure mode-I loading. Eng Fract Mech, 2016, 163: 449 doi: 10.1016/j.engfracmech.2016.05.014
    [21]
    Ayatollahi M R, Moghaddam M R, Berto F. A generalized strain energy density criterion for mixed mode fracture analysis in brittle and quasi-brittle materials. Theor Appl Fract Mech, 2015, 79: 70 doi: 10.1016/j.tafmec.2015.09.004
    [22]
    Williams M L. On the stress distribution at the base of a stationary crack. J Appl Mech, 1957, 24: 109 doi: 10.1115/1.4011454
    [23]
    Khan S M A, Khraisheh M K. Analysis of mixed mode crack initiation angles under various loading conditions. Eng Fract Mech, 2000, 67(5): 397 doi: 10.1016/S0013-7944(00)00068-0
    [24]
    Smith D J, Ayatollahi M R, Pavier M J. On the consequences of T-stress in elastic brittle fracture. Proc R Soc London A, 2006, 462(2072): 2415 http://adsabs.harvard.edu/abs/2006RSPSA.462.2415S
    [25]
    Sih G C. Strain-energy-density factor applied to mixed mode crack problems. Int J Fract, 1974, 10(3): 305 doi: 10.1007/BF00035493
    [26]
    ANSYS Inc.ANSYS Mechanical Theory Reference:Release 15.0.Canonsburg,2014
    [27]
    Guo F, Morgenstern N R, Scott J D.Interpretation of hydraulic fracturing breakdown pressure//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.Pergamon, 1993: 617
    [28]
    Bruno M S, Nakagawa F M.Pore pressure influence on tensile fracture propagation in sedimentary rock//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.Pergamon, 1991: 261
    [29]
    Hossain M M, Rahman M K, Rahman S S. Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes. J Petrol Sci Eng, 2000, 27(3-4): 129 doi: 10.1016/S0920-4105(00)00056-5
    [30]
    Ikeda R, Tsukahara H.Hydraulic fracturing technique: pore pressure effect and stress heterogeneity//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.Pergamon, 1989: 471
    [31]
    Haimson B, Fairhurst C. Hydraulic fracturing in porous-permeable materials. J Petrol Technol, 1969, 21(7): SPE-2354-PA http://www.researchgate.net/publication/250086937_Hydraulic_Fracturing_in_Porous-Permeable_Materials
    [32]
    da Silva B G, Einstein H H. Finite element study of fracture initiation in flaws subject to internal fluid pressure and vertical stress. Int J Solids Struct, 2014, 51(23-24): 4122 doi: 10.1016/j.ijsolstr.2014.08.006
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)

    Article views (1205) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频