<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 11
Dec.  2019
Turn off MathJax
Article Contents
WANG Hao-yu, LIU Ying-shu, ZHANG Chuan-zhao, CHEN Fu-xiang, MA Xiao-jun, LI Chun-wang. Heat and mass transfer characteristics of the gas?solid two-phase model in a π-shaped centripetal radial flow adsorber[J]. Chinese Journal of Engineering, 2019, 41(11): 1473-1483. doi: 10.13374/j.issn2095-9389.2019.03.26.001
Citation: WANG Hao-yu, LIU Ying-shu, ZHANG Chuan-zhao, CHEN Fu-xiang, MA Xiao-jun, LI Chun-wang. Heat and mass transfer characteristics of the gas?solid two-phase model in a π-shaped centripetal radial flow adsorber[J]. Chinese Journal of Engineering, 2019, 41(11): 1473-1483. doi: 10.13374/j.issn2095-9389.2019.03.26.001

Heat and mass transfer characteristics of the gas?solid two-phase model in a π-shaped centripetal radial flow adsorber

doi: 10.13374/j.issn2095-9389.2019.03.26.001
More Information
  • In order to investigate the heat and the mass transfer during pressure swing adsorption (PSA) for oxygen production and improve oxygen production efficiency, a gas-solid two-phase pressure swing adsorption model was established for the π-shaped centripetal radial flow adsorber (CP-π RFA). The energy model, the adsorption heat, and the particle diameter were comparatively studied using this model. The results show that the maximum temperature in the adsorbent bed during pressurization with air (PR) and high-pressure feed (AD) processes for the single-phase model are 309.19 K and 313.63 K, respectively. The highest oxygen mole fractions in the adsorbent bed during PR step and AD step using the single-phase model are 55.66% and 62.65%, respectively. Under the same operating conditions, the maximum temperature in the adsorbent bed during the PR and AD steps for the two-phase model are 302.27 K and 305.29 K, respectively. The highest oxygen mole fractions in the adsorbent bed during PR step and AD step using the two-phase model are 57.51% and 66.02%, respectively. For no-adsorption heat, the maximum temperatures are 293.5 K and 293.9 K, respectively, and the highest oxygen mole fractions in the adsorbent bed during the PR step and AD step with no-adsorption heat are 59.25% and 72.18%, respectively. However, the maximum temperature in the bed during the two steps with adsorption heat are 302.3 K and 305.3 K, respectively, and the highest oxygen mole fractions are 57.51% and 66.02%, respectively. As the particle diameter increases, the highest oxygen mole fraction of the outlet would decrease, while the oxygen flow rate and recovery would increase. The adsorbent with a particle diameter of 1.6 mm is the best size. The laws of the heat and the mass transfer in the adsorber can provide an important technical reference for CP-π RFA in the PSA for oxygen production.

     

  • loading
  • [1]
    Chiang A S T, Hong M C. Radial flow rapid pressure swing adsorption. Adsorption, 1995, 1(2): 153 doi: 10.1007/BF00705002
    [2]
    Huang W C, Chou C T. Comparison of radial-and axial-flow rapid pressure swing adsorption processes. Ind Eng Chem Res, 2003, 42(9): 1998 doi: 10.1021/ie020129c
    [3]
    Dai Z S, Yu M, Rui D Z, et al. Investigation on a vertical radial flow adsorber designed by a novel parallel connection method. Chin J Chem Eng, 2018, 26(3): 484 doi: 10.1016/j.cjche.2017.11.005
    [4]
    Tian Q Q, He G G, Wang Z P, et al. A novel radial adsorber with parallel layered beds for prepurification of large-scale air separation units. Ind Eng Chem Res, 2015, 54(30): 7502 doi: 10.1021/acs.iecr.5b00555
    [5]
    Ruthven D M, Farooq S, Knaebel K S. Pressure Swing Adsorption. New York: VCH Publishers, 1994
    [6]
    Smolarek J, Leavitt F W, Nowobilski J J, et al. Radial Bed Vaccum/Pressure Swing Adsorber Vessel: US Patent, 5759242.1998−6−2
    [7]
    Genkin V S, Dilman V V, Sergeev S P. Distribution of a gas stream over height of a catalyst bed in a radial contact apparatus. Int Chem Eng, 1973, 13(1): 24
    [8]
    鄭德馨, 謝志鏡, 白麗君. 徑向流吸附器吸附穿透曲線的計算. 西安石油學院學報, 1990, 5(4):31

    Zheng D X, Xie Z J, Bai L J. Prediction of adsorption breakthrough curves of the radical flow adsorber. J Xi'an Petrol Inst, 1990, 5(4): 31
    [9]
    Kareeri A A, Zughbi H D, Al-Ali H H. Simulation of flow distribution in radial flow reactors. Ind Eng Chem Res, 2006, 45(8): 2862 doi: 10.1021/ie050027x
    [10]
    陸軍亮, 張學軍, 邱利民, 等. 立式徑向流吸附器中流體均布的理論分析. 化工學報, 2012, 63(增刊 2): 21

    Lu J L, Zhang X J, Qiu L M, et al. Theoretical analysis of uniform flow distribution in vertical radical adsorption bed. CIESC Journal, 2012, 63(Suppl 2): 21
    [11]
    張學軍, 王曉蕾, 陸軍亮, 等. 空分用立式徑向流分子篩吸附器數值模擬. 工程熱物理學報, 2013, 34(5):822

    Zhang X J, Wang X L, Lu J L, et al. Numerical simulation of vertical radical flow adsorber used in air separation unit. J Eng Thermophys, 2013, 34(5): 822
    [12]
    Li R J, Zhu Z B. Investigations on hydrodynamics of multilayer π-type radial flow reactors. Asia-Pac J Chem Eng, 2012, 7(4): 517 doi: 10.1002/apj.601
    [13]
    Zhang X J, Lu J L, Qiu L M, et al. A mathematical model for designing optimal shape for the cone used in z-flow type radial flow adsorbers. Chin J Chem Eng, 2013, 21(5): 494 doi: 10.1016/S1004-9541(13)60527-3
    [14]
    Zhapbasbayev U K, Ramazanova G I, Kenzhaliev O B. Modelling of turbulent flow in a radial reactor with fixed bed. Thermophys Aeromech, 2015, 22(2): 229 doi: 10.1134/S0869864315020092
    [15]
    王浩宇, 劉應書, 孟宇. 徑向流吸附器布氣系統結構對布氣效果的影響. 工程科學學報, 2015, 37(1):91

    Wang H Y, Liu Y S, Meng Y. Effect of the gas distribution system structure of a radial flow adsorber on gas distribution. Chin J Eng, 2015, 37(1): 91
    [16]
    王浩宇, 劉應書, 施紹松, 等. 徑向流吸附器內部結構對變壓吸附制氧效果的影響. 工程科學學報, 2015, 37(2):238

    Wang H Y, Liu Y S, Shi S S, et al. Influence of the structure of radial flow adsorbers on oxygen production with pressure swing adsorption. Chin J Eng, 2015, 37(2): 238
    [17]
    Liu Y S, Zheng X G, Dai R F. Numerical study of flow maldistribution and depressurization strategies in a small-scale axial adsorber. Adsorption, 2014, 20(5-6): 757 doi: 10.1007/s10450-014-9619-7
    [18]
    Sun L M, Amar N B, Meunier F. Numerical study on coupled heat and mass transfers in an adsorber with external fluid heating. Heat Recovery Syst CHP, 1995, 15(1): 19 doi: 10.1016/0890-4332(95)90034-9
    [19]
    Zhu X Q, Liu Y S, Yang X, et al. Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen. Adsorption, 2017, 23(1): 175 doi: 10.1007/s10450-016-9843-4
    [20]
    Li Z Y, Liu Y S, Wang H H, et al. A numerical modelling study of SO2 adsorption on activated carbons with new rate equations. Chem Eng J, 2018, 353: 858 doi: 10.1016/j.cej.2018.07.119
    [21]
    Li G, Xiao P, Zhang J, et al. The role of water on postcombustion CO2 capture by vacuum swing adsorption: Bed layering and purge to feed ratio. AIChE J, 2014, 60(2): 673 doi: 10.1002/aic.14281
    [22]
    Yang X, Epiepang F E, Li J B, et al. Sr-LSX zeolite for air separation. Chem Eng J, 2019, 362: 482 doi: 10.1016/j.cej.2019.01.066
    [23]
    Epiepang F E, Yang X, Li J B, et al. Mixed‐cation LiCa‐LSX zeolite with minimum lithium for air separation. AIChE J, 2018, 64(2): 406 doi: 10.1002/aic.16032
    [24]
    Sorial G A, Granville W H, Daly W O. Adsorption equilibria for oxygen and nitrogen gas mixtures on 5a molecular sieves. Chem Eng Sci, 1983, 38(9): 1517 doi: 10.1016/0009-2509(83)80087-6
    [25]
    方靚, 肖金生, 皮埃爾·貝納德, 等. 氫氣純化變壓吸附循環的熱效應. 工程熱物理學報, 2018, 39(5):1104

    Fang L, Xiao J S, Benard P, et al. Thermal effects on pressure swing adsorption cycles for hydrogen purification. J Eng Thermophys, 2018, 39(5): 1104
    [26]
    Prakash M J, Prasad M, Srinivasan K. Modeling of thermal conductivity of charcoal–nitrogen adsorption beds. Carbon, 2000, 38(6): 907 doi: 10.1016/S0008-6223(99)00202-X
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(15)  / Tables(7)

    Article views (1098) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频