<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 11
Dec.  2019
Turn off MathJax
Article Contents
HUANG Jin-lei, ZANG Yong, GAO Zhi-ying. Influence of friction coefficient asymmetry on vibration and stability of rolling mills during hot rolling[J]. Chinese Journal of Engineering, 2019, 41(11): 1465-1472. doi: 10.13374/j.issn2095-9389.2019.03.06.002
Citation: HUANG Jin-lei, ZANG Yong, GAO Zhi-ying. Influence of friction coefficient asymmetry on vibration and stability of rolling mills during hot rolling[J]. Chinese Journal of Engineering, 2019, 41(11): 1465-1472. doi: 10.13374/j.issn2095-9389.2019.03.06.002

Influence of friction coefficient asymmetry on vibration and stability of rolling mills during hot rolling

doi: 10.13374/j.issn2095-9389.2019.03.06.002
More Information
  • The modern rolling industry has improved product quality, and the technical requirements of high accuracy and high dynamic performance have made the issue of rolling mill vibration more prominent. Rolling mill system instability seriously affects the quality of the product, reduces the accuracy of the product, and even causes serious damage to the rolling mill equipment. During hot rolling process, friction is of great importance to vibration and stability of the rolling mill. There is a difference in the friction coefficient between the upper rolling interface and lower rolling interface. Considering the asymmetric friction coefficient, a chatter model was established by combing the rolling process model and the vertical?horizontal?torsional structure model of a hot rolling mill to study the relationship between friction coefficient asymmetry and stability of the rolling mill system. According to the mathematical model, the friction coefficient stability domain of a rolling mill system is determined by the application of stability criterion. And it shows that the influence of the asymmetric friction coefficient on the stability domain is significant. Due to the different degrees of asymmetry, the system is divided into stable domain, horizontal instability domain, and horizontal?torsional instability domain. As the asymmetry in terms of the friction coefficient becomes considerable, it would occur various vibration modes. Through a field test of a hot rolling mill, the vibration signal of the rolling mill system was obtained, which verified the correctness and validity of the simulation analysis results. The degree of asymmetry in the friction coefficient is the same when rolling the container plate and the Q235 plate, but the deformation resistance of the system is different. The system falls into the horizontal instability domain when the container plate is rolled, displaying clearly horizontal vibration. However, the system falls into the stable domain when the Q235 plate is rolled, and the system shows no obvious vibration.

     

  • loading
  • [1]
    Yun I S, Wilson W R D, Ehmann K F. Review of chatter studies in cold rolling. Int J Mach Tools Manuf, 1998, 38(12): 1499 doi: 10.1016/S0890-6955(97)00133-8
    [2]
    Yun I S, Wilson W R D, Ehmann K F. Chatter in the strip rolling process, Part 1: dynamic model of rolling. J Manuf Sci Eng, 1998, 120(2): 330 doi: 10.1115/1.2830131
    [3]
    Yun I S, Wilson W R D, Ehmann K F. Chatter in the strip rolling process, Part 2: Dynamic rolling experiments. J Manuf Sci Eng, 1998, 120(2): 337 doi: 10.1115/1.2830132
    [4]
    Yun I S, Ehmann K F, Wilson W R D. Chatter in the strip rolling process, Part 3: Chatter model. J Manuf Sci Eng, 1998, 120(2): 343 doi: 10.1115/1.2830133
    [5]
    Hu P H, Ehmann K F. A dynamic model of the rolling process. Part I: Homogeneous model. Int J Mach Tools Manuf, 2000, 40(1): 1 doi: 10.1016/S0890-6955(99)00049-8
    [6]
    Hu P H, Ehmann K F. A dynamic model of the rolling process. Part II: Inhomogeneous model. Int J Mach Tools Manuf, 2000, 40(1): 21 doi: 10.1016/S0890-6955(99)00050-4
    [7]
    宋冀生, 王曼星. 熱軋時軋制溫度對接觸弧內摩擦系數的影響. 鋼鐵, 1979, 14(4):44

    Song J S, Wang M X. The Influence of rolling temperature on coefficient of friction in the contact arc in hot rolling. Iron Steel, 1979, 14(4): 44
    [8]
    Kim Y S, Zhang N, Ji J C, et al. The effect of rolling speed and friction on cold rolling mill stability//ASME 2012 International Mechanical Engineering Congress and Exposition. Houston, 2012: 291
    [9]
    Zeng L Q, Zang Y, Gao Z Y, et al. Stability analysis of the rolling mill multiple-modal-coupling vibration under nonlinear friction. J Vibroeng, 2015, 17(6): 2824
    [10]
    侯東曉, 彭榮榮, 劉浩然. 變摩擦力下板帶軋機輥系垂直?水平耦合振動特性. 東北大學學報(自然科學版), 2013, 34(11):1615

    Hou D X, Peng R R, Liu H R. Vertical-horizontal coupling vibration characteristics of strip mill rolls under the variable friction. J Northeast Univ Nat Sci, 2013, 34(11): 1615
    [11]
    郜志英, 臧勇, 曾令強. 軋機顫振建模及理論研究進展. 機械工程學報, 2015, 51(16):87

    Gao Z Y, Zang Y, Zeng L Q. Review of modelling and theoretical studies on chatter in the rolling mills. J Mech Eng, 2015, 51(16): 87
    [12]
    鄒家祥, 徐樂江. 冷連軋機系統振動控制. 北京: 冶金工業出版社, 1998

    Zou J X, Xu L J. Vibration Control of Cold Tandem Mill System. Beijing: Metallurgical Industry Press, 1998
    [13]
    Huang J L, Zang Y, Gao Z Y, et al. Influence of asymmetric structure parameters on rolling mill stability. J Vibroeng, 2017, 19(7): 4840 doi: 10.21595/jve.2017.18263
    [14]
    Hwang Y M, Tzou G Y. Analytical and experimental study on asymmetrical sheet rolling. Int J Mech Sci, 1997, 39(3): 289 doi: 10.1016/S0020-7403(96)00024-0
    [15]
    Gao H, Ramalingam S C, Barber G C, et al. Analysis of asymmetrical cold rolling with varying coefficients of friction. J Mater Process Technol, 2002, 124(1-2): 178 doi: 10.1016/S0924-0136(02)00131-0
    [16]
    Zhang S H, Zhao D W, Gao C R, et al. Analysis of asymmetrical sheet rolling by slab method. Int J Mech Sci, 2012, 65(1): 168 doi: 10.1016/j.ijmecsci.2012.09.015
    [17]
    Salimi M, Kadkhodaei M. Slab analysis of asymmetrical sheet rolling. J Mater Process Technol, 2004, 150(3): 215 doi: 10.1016/j.jmatprotec.2004.01.011
    [18]
    李博, 張清東, 張曉峰. 非對稱軋制力能參數與帶鋼張應力分布規律. 哈爾濱工業大學學報, 2014, 46(9):68 doi: 10.11918/hitxb20140912

    Li B, Zhang Q D, Zhang X F. Rolling parameters and strip tensile stress distribution of asymmetrical rolling process. J Harbin Inst Technol, 2014, 46(9): 68 doi: 10.11918/hitxb20140912
    [19]
    ?wia?toniowski A, Thomson P F. Theoretical study of the dynamic effect on the warping of rolled strip and loss of flatness. J Mater Process Technol, 1996, 61(4): 373
    [20]
    Jafari A A. Asymmetrical Rolling and Self-Excited Vibration in A Hot Roughing Mill [Dissertation]. Wollongong: University of Wollongong, 1994
    [21]
    白露露. 考慮非對稱因素的多模態軋機振動與軋制穩定性研究[學位論文]. 北京: 北京科技大學, 2017

    Bai L L. Research on Multimode Coupled Vibration and Stability Considering the Rolling Mill Asymmetric Factors [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article views (1135) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频